Uk Made E Juice UK

E-cigs vs. T-cigs

Electronic cigarettes may be less harmful in the UK than cigarettes but may still be dangerous. Under which circumstances should a person use ecigs? Will they fill your body with plastic?

Electronic cigarettes can contain propylene glycol or vegetable glycerine with nicotine (and in at least two cases polyethylene glycol 400) to form a solution that when heated by an atomizer, produces a visible vapour that provides nicotine to the bloodstream via the lungs when inhaled.

Electronic cigarettes have not been studied enough by scientists in laboratories to form conclusive evidence that their use is either beneficial or harmful to humans. However, some are concerned that unknown side-effects could occur with continuous, consistent use of electronic cigarettes, including cancer.

Behaviour surrounding their use is worrisome because e-cigs are being used habitually by a percentage of non-smokers who otherwise would not use nicotine, they may seem attractive to children, they are not closely regulated, and their use makes it very easy to overdose on nicotine even for experienced smokers.

Ego Electronic Cigarette

UK Electronic Cigarettes and E-Liquid

E-cigs vs. T-cigs

Electronic cigarettes may be less harmful than cigarettes but may still be dangerous. Under which circumstances should a person use electronic cigarettes? Will they fill your body with plastic?

Electronic cigarettes can contain propylene glycol or vegetable glycerine with nicotine (and in at least two cases polyethylene glycol 400) to form a solution that when heated by an atomizer, produces a visible vapour that provides nicotine to the bloodstream via the lungs when inhaled.

Electronic cigarettes have not been studied enough by scientists in laboratories to form conclusive evidence that their use is either beneficial or harmful to humans. However, some are concerned that unknown side-effects could occur with continuous, consistent use of electronic cigarettes, including cancer.

Behaviour surrounding their use is worrisome because e-cigs are being used habitually by a percentage of non-smokers who otherwise would not use nicotine, they may seem attractive to children, they are not closely regulated, and their use makes it very easy to overdose on nicotine even for experienced smokers.

Additionally, they're being marketed to children.

Do E-cigs Impact Society?

Are electronic cigarettes safe to use in public?

Many countries, states, cities, companies, bars and restaurants, and other organizations are banning the use of electronic cigarettes. There are a variety of reasons for their ban.

In 'Drugs And Society' by Glen R. Hanson, Peter J. Venturelli, Annette E. Fleckenstein, the implications the use of drugs has on society is explored in detail. The findings are quite fascinating.


De-icing your lungs?

Many articles about e-cigarettes will focus on the legality of their use and sale, their addictiveness, and the demographics who uses them. What few articles mention though, is what the ingredients in electronic cigarettes are and why you may not want them in your body.

Propylene glycol is basically plastic. Actually it's an additive for manufacturing plastic. The single largest use of PG is for the production of unsaturated polyester resins. It is also used as a humectant (an additive that keeps something moist), and as a preservative for food and tobacco. Mmm, yummy.

Propylene glycol has similar thermal properties to ethylene glycol in that it can lower the freezing point of water when added to it. As a result, propylene glycol is often used as aircraft de-icing fluid, according to Steve Ritter's article What's That Stuff?" on the C&EN website.

Another fun fact: disclosure of which chemicals are in any given electronic cigarette are often not made available by manufacturers or retailers. The most recent information regarding the health effects on humans of acute exposure to propylene glycol by inhalation is from 2002. Please find this information made available by the EPA at the bottom of this article.

Formaldehyde in Cigarettes; Nicotine could Kill a Child

You are probably not a doctor (although, you might be), and you probably rely on the advice of experts for medical information and health recommendations. Using your best judgement, do you think that electronic cigarettes are safe to use? Would you recommend using an electronic cigarette to your friends and family? How about your kids?

Take a look at this video from reports in France. It says that e-cigarettes contain level of formaldehyde near that of tobacco cigarettes. What? I do not know if that information is true, but if it is, it's not good!

The reports urge people to understand that electronic cigarettes are not healthy. Furthermore, the reports say that some models of e-cigarette do not have protective safety caps even though they have enough nicotine to kill a child. That is a liability. Yikes!


Quick facts


  • The molecular formula for propylene glycol is C3H8O2
  • It is a clear and colorless liquid and is non-corrosive
  • It is unknown whether or not is adversely affects human health
  • It is a main ingredient in electronic cigarettes and windshield washer liquid
  • Using it, you might look cool to some people (but they are pathetic losers)
  • Plastic boogers – your snot turns white and is now made of plastic

Ready for the formula? It's CH3CHOHCH2OH

The molecular formula for propylene glycol is C3H8O2. It is a clear and colourless liquid and is non-corrosive.

C3H8O2 can accumulate in your body from the use of shampoo, deodorant, moisturisers and creams, pain medication and a host of food products. So there's probably already enough in there without the use of e-cigs.

E-cigarettes offer you the opportunity to pay money to suck PG directly into the center of your body.


What Should You Do About It?

At best, e-cigarettes are neutral for your health and at worst they are detrimental to your health. How bad for you are they?

You'll need good luck if you are currently using an electronic cigarette! Because the health effects are largely unknown, using an e-cig is a gamble and you'll need all the luck you can get.

Enjoy!

Propylene Glycol Reference from the EPA

It looks like a few people have looked into it before. It's surprising there's not a lot of available data as to the effects of inhalation on humans. Shocking!

Check out this Propylene Glycol Reference List from the EPA:


Support: [] - Acute Toxicity to Daphnids (Daphnia Magna) under Static Conditions, with Cover Letter Dated 8/28/96 (Sanitized). EPA/OTS; Doc #89960000203S . 1996.
Code: 8

Methoxypropanol, dipropylene glycol methyl ether. S.Hirzel Verlag, P.O.Box 10 10 61, 70009 Stuttgart, Germany, 1997.vii, 142p.Bibl.ref. 1997.
Code: 8

A 2-Year Vapor Inhalation Oncogenicity Study & Evaluation of Hepatic Cellular Proliferation & P450 Enzyme Induction in B6c3f1 Mice W/Cover Letter Dated 06/02/99 (Sanitized). EPA/OTS; Doc #86990000051S . 1999.
Code: 9

2-Year Vapor Inhl Chronic/Oncogenicity Study & Evaluation of Hepatic & Renal Cellular Proliferation, P450 Enzyme Induction & Protein Droplet Nephropathy W/Cover Letter Dated 060299. EPA/OTS; Doc #86990000050 . 1999.
Code: 9

Initial Submission: Letter from Ciba Specialty Chems Inc to Usepa Re Acute Toxicity Studies of Alcopol 0 70pg, Collafix Pp2, & Cfr 5651/Magnafloc 1697, W/Attchmts & Dated 12/23/98. EPA/OTS; Doc #88990000073 . 1999.
Code: 9

Comparative Metabolism and Disposition of Ethylene Glycol Monomethyl Ether and Propylene Glycol Monomethyl Ether in Male Rats with Attachments. EPA/OTS; Doc #86-890001230 . 2000.
Code: 9

Propylene Glycol Monomethyl Ether: Inhalation Teratology Study in Rats and Rabbits. EPA/OTS; Doc #86-890001233 . 2000.
Code: 9

Propylene Glycol Monomethyl Ether: Inhalation Teratology Probe Study in Rats and Rabbits. EPA/OTS; Doc #86-890001232 . 2000.
Code: 9

Evaluation of Propylene Glycol-N-Butyl Ether in an Vitro Chromosomal Aberration Assay Utilizing Chinese Hamster Ovary (Cho) Cells (Final Report) (Sanitized). EPA/OTS; Doc #86-890001243S . 2000.
Code: 9

Evaluation of Propylene Glycol-N-Butyl Ether in the Ames Salmonella/Mammalian-Microsome Bacterial Mutagenicity Assay (Final Report) (Sanitized). EPA/OTS; Doc #86-890001244S . 2000.
Code: 9

Nonlinear Kinetics of Inhaled Propylene Glycol Monomethyl Ether in Fischer 344 Rats Following Single and Repeated Exposures (Final Report) with Attachments. EPA/OTS; Doc #86-890001164 . 2000.
Code: 9

Analysis of Dowanol Cx, a Mixture of Dipropylene Glycol Methyl Ether & Propylene Glycol Isobutyl Ether in the Aquatic Environment (Final Report) (Sanitized). EPA/OTS; Doc #86-890001114S . 2000.
Code: 8

Evaluation of the Acute Dermal Toxicity of Dowanol-Pnb in Rat with Attachments (Sanitized). EPA/OTS; Doc #86-890001250S . 2000.
Code: 9

Evaluation of the Acute Oral Toxicity of Dowanol-Pnb in the Rat (Final Report) (Sanitized). EPA/OTS; Doc #86-890001246S . 2000.
Code: 9

Results of Range Finding Toxicological Test on Three Samples of 4-Tert Octyl Phenol. EPA/OTS; Doc #40-5462011 . 2000.
Code: 8

Blood Pharmacokinetics of Propylene Glycol Methyl Ether and Propylene Glycol Methyl Ether Acetate in Male F-344 Rats after Dermal Application, with Cover Letter Dated 2/10/2000. EPA/OTS; Doc #FYI-OTS-0600-1385 . 2000.
Code: 9

Propylene Glycol Monomethyl Ether: A 13-Week Inhalation Toxicity Study in Rats and Rabbits. EPA/OTS; Doc #86-890001229 . 2000.
Code: 9

Warning for oral solution. AIDS Patient Care STDS 14(9):519-20. 2000.
Code: 8

Odor Evaluation Study on Dowtherm 209 Coolant (Dowanol Pm; Monomethyl Ether of Propylene Glycol) in Humans. EPA/OTS; Doc #86-890001220 . 2000.
Code: 8

Assessment of the Oral Toxicity, Including the Haemolytic Activity of Dowanol-Pnb in the Rat: 14-Day Study with Attachments. EPA/OTS; Doc #86-890001253 . 2000.
Code: 9

Chronic Skin Absorption of Propylene Glycol Methyl Ether (33b) and Dipropylene Glycol Methyl Ether (50b) in Rabbits. EPA/OTS; Doc #86-890001219 . 2000.
Code: 9

Propylene Glycol-N-Butyl Ether: An Acute Vapor Inhalation Study in Fischer 344 Rats (Final Report) with Attachments (Sanitized). EPA/OTS; Doc #86-890001245S . 2000.
Code: 9

Propylene Glycol Monomethyl Ether (Pgme): 21-Day Dermal Study in New Zealand White Rabbits. EPA/OTS; Doc #86-890001162 . 2000.
Code: 9

Propylene Glycol Monomethyl Ether: 2-Week Vapor Inhalation Study in Rats and Mice (Sanitized). EPA/OTS; Doc #86-890001235S . 2000.
Code: 9

Propylene Glycol-N-Butyl Ether: Two-Week Vapor Inhalation Study with Fischer 344 Rats (Final Report) (Sanitized). EPA/OTS; Doc #86-890001260S . 2000.
Code: 9

Subchronic (13-Wk) Dermal Toxicity Study with Propylene Glycol-N-Butyl Ether in Rats (Final Report). EPA/OTS; Doc #86-890001257 . 2000.
Code: 9

Alfons, K. and Engstrom, S. Drug compatibility with the sponge phases formed in monoolein, water, and propylene glycol or poly(ethylene glycol). J Pharm Sci 87(12):1527-30. 1998.
Code: 8

Altaras, N. E. and Cameron, D. C. Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. Appl Environ Microbiol 65(3):1180-5. 1999.
Code: 8

Altaras, N. E. and Cameron, D. C. Enhanced production of (R)-1,2-propanediol by metabolically engineered Escherichia coli. Biotechnol Prog 16(6):940-6. 2000.
Code: 8

Altaras, N. E., Etzel, M. R., and Cameron, D. C. Conversion of sugars to 1,2-propanediol by Thermoanaerobacterium thermosaccharolyticum HG-8. Biotechnol Prog 17(1):52-6. 2001.
Code: 8

Andrews, A. H. and Wilkinson, J. Recombinant bovine somatotropin and propylene glycol following glucose injection in treating pregnancy toxaemia. Large Animal Practice; 19 (6).1998.31-33. 1998.
Code: 8

Anon. BIBRA Toxicity Profile of propylene glycol. Govt Reports Announcements & Index (GRA&I), Issue 19, 1996 . 1996.
Code: 7

Anon. Toxicology and Carcinogenesis Studies of 1-Chloro-2-Propanol (Technical Grade) (CAS No. 127-00-4) in F344 Rats and B6C3F1 Mice (Drinking Water Studies). Govt Reports Announcements & Index (GRA&I), Issue 06, 1999 . 1998.
Code: 8

Anonymous. Joint Assessment of Commodity Chemicals No. 33, 1,1-Dichloro-2,2,2-trifluoroethane (HCFC-123) CAS No. 306-83-2. European Centre for Ecotoxicology and Toxicology of Chemicals, Brussels, 55 pages, 92 references, 1996 . 1996.
Code: 8

Anonymous. Propylenglykol (Aug 1995). TA:Beratergremium fuer umweltrelevante Altstoffe (BUA) PG:25 p YR:1996 IP: VI:166 . 1996.
Code: 7

Anonymous. Dipropylene glycol (December 1993). TA:Beratergremium fuer umweltrelevante Altstoffe (BUA) PG:70 p YR:1996 IP: VI:162 . 1996.
Code: 8

Anonymous. Reproductive toxicology. Propylene glycol. Environ Health Perspect 1997 Feb;105 Suppl 1:231-2 . 1997.
Code: 9

Anonymous. Reproductive toxicology. Propylene glycol monomethyl ether. Environ Health Perspect 1997 Feb;105 Suppl 1:233-4 . 1997.
Code: 8

Anonymous. Toxicological profile for Ethylene Glycol and Propylene Glycol. TA:Agency for Toxic Substances and Disease Registry U.S.Public Health Service PG:249 p YR:1997 IP: VI. 1997.
Code: 7

Anonymous. Reproductive toxicology. 2,2-bis(bromomethyl)-1,3-propanediol. Environ Health Perspect 1997 Feb;105 Suppl 1:271-2 . 1997.
Code: 8

Anonymous. Final report on the safety assessment of Yarrow (achillea millefolium) extract. TA:Int J Toxicol PG:79-84 YR:2001 IP:Suppl 2 VI:20 . 2001.
Code: 8

Anonymous. Final report on the safety assessment of Calendula officinalis extract and calendula officinalis. TA:Int J Toxicol PG:13-20 YR:2001 IP:Suppl 2 VI:20 . 2001.
Code: 8

Anonymous. Final report on the safety assessment of Arnica montana extract and arnica montana. TA:Int J Toxicol PG:1-11 YR:2001 IP:Suppl.2 VI:20 . 2001.
Code: 9

Anonymous. Final report on the safety assessment of Hypericum perforatum extract and hypericum perforatum oil. TA:Int J Toxicol PG:31-9 YR:2001 IP:Suppl 2 VI:20 . 2001.
Code: 8

Aoshima, H. Effects of alcohols and food additives on glutamate receptors expressed in Xenopus oocytes: Specificity in the inhibition of the receptors. Bioscience Biotechnology and Biochemistry; 60 (3).1996.434-438. 1996.
Code: 8

Aouizerate, P., Dume, L., and Astier, A. Ethylene glycol poisoning: Presence of propylene glycol traces, and research of analytic interference due to propylene glycol, in the colorimetric determination of glycolic acid. Journal De Pharmacie Clinique; 15 (Spec.Issue).1996.40-42. 1996.
Code: 8

Appleton, R. E. The new antiepileptic drugs [published erratum appears in Arch Dis Child 1997 Jan;76(1):81]. Arch Dis Child 1996 Sep;75(3):256-62 . 1996.
Code: 8

Araki, Y., Andoh, A., Fujiyama, Y., Takizawa, J., Takizawa, W., and Bamba, T. Short-term oral administration of a product derived from a probiotic, Clostridium butyricum induced no pathological effects in rats. Int J Mol Med 9(2):173-7. 2002.
Code: 8

Arbour, R. B. Propylene glycol toxicity related to high-dose lorazepam infusion: case report and discussion. Am J Crit Care 8(1):499-506. 1999.
Code: 9

Arellano, A., Santoyo, S., Martn, C., and Ygartua, P. Surfactant effects on the in vitro percutaneous absorption of diclofenac sodium. Eur J Drug Metab Pharmacokinet 23(2):307-12. 1998.
Code: 8

Arellano, A., Santoyo, S., Martin, C., and Ygartua, P. Influence of propylene glycol and isopropyl myristate on the in vitro percutaneous penetration of diclofenac sodium from carbopol gels. Eur J Pharm Sci 7(2):129-35. 1999.
Code: 8

Baker, R. C. and Kramer, R. E. Cytotoxicity of short-chain alcohols. Cho, A.K.(Ed.).Annual Review of Pharmacology and Toxicology, Vol.39.Vii+470p.Annual Reviews Inc.: Palo Alto, California, USA.Isbn 0-8243-0439-X; 39 (0).1999.127-150. 1999.
Code: 8

Barber, J. T., Thomas, D. A., Ensley, H. E., and Yatsu, L. Y. Duckweed Diols and Death. Plant Biology '97: 1997 Annual Meetings of the American Society of Plant Physiologists and the Canadian Society of Plant Physiologists, Japanese Society of Plant Physiologists and the Australian Society of Plant Physiologists, Vancouver, British Columbia, Canada, August 2-6, 1997.Plant Physiology (Rockville); 114 (3 Suppl.).1997.124. 1997.
Code: 8

Barratt, M. D. QSARS for the eye irritation potential of neutral organic chemicals. Toxicology in Vitro; 11 (1-2).1997.1-8. 1997.
Code: 8

Basketter, D. A., Chamberlain, M., Griffiths, H. A., Rowson, M., Whittle, E., and York, M. The classification of skin irritants by human patch test. Food and Chemical Toxicology; 35 (8).1997.845-852. 1997.
Code: 8

Basketter, D. A., Gerberick, G. F., and Kimber, I. Strategies for identifying false positive responses in predictive skin sensitization tests. Food and Chemical Toxicology; 36 (4).1998.327-333. 1998.
Code: 8

Bausmith, D. S. and Neufeld, R. D. Soil biodegradation of propylene glycol based aircraft deicing fluids. Water Environment Research; 71 (4).1999.459-464. 1999.
Code: 8

Bennett, G. N. and San, K. Y. Microbial formation, biotechnological production and applications of 1,2-propanediol. Appl Microbiol Biotechnol 55(1):1-9. 2001.
Code: 8

Bjerre, C., Bjork, E., and Camber, O. Bioavailability of the sedative propiomazine after nasal administration in rats. Int.J.Pharm.; VOL 144 ISS Nov 29 1996, P217-224, (REF 22) . 1996.
Code: 8

Blake, D. A., Whikehart, D. R., Yu, H., Vogel, T., and Roberts, D. D. Common cryopreservation media deplete corneal endothelial cell plasma membrane Na+,K+ ATPase activity. Curr Eye Res 15(3):263-71. 1996.
Code: 8

Bobik, T. A., Xu, Y., Jeter, R. M., Otto, K. E., and Roth, J. R. Propanediol utilization genes (pdu) of Salmonella typhimurium: three genes for the propanediol dehydratase. J Bacteriol 179(21):6633-9. 1997.
Code: 8

Bobik, T. A., Havemann, G. D., Busch, R. J., Williams, D. S., and Aldrich, H. C. The propanediol utilization (pdu) operon of Salmonella enterica serovar Typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme B(12)-dependent 1, 2-propanediol degradation. J Bacteriol 181(19):5967-75. 1999.
Code: 8

Bolon, B., Bucci, T. J., Warbritton, A. R., Chen, J. J., Mattison, D. R., and Heindel, J. J. Differential follicle counts as a screen for chemically induced ovarian toxicity in mice: Results from continuous breeding bioassays. Fundamental and Applied Toxicology; 39 (1).1997.1-10. 1997.
Code: 8

Boman, A. and Maibach, H. Influence of Evaporation and Repeated Exposure on the Percutaneous Absorption of Organic Solvents. Elsner, P., Et Al.(Ed.).Current Problems in Dermatology (Basel), Vol.25.Prevention of Contact Dermatitis; International Conference on the Prevention of Contact Dermatitis, Zurich, Switzerland, October 4-7, 1995.X+226p.S.Karger Ag: Basel, Switzerland; New York, New York, USA.Isbn 3-8055-6311-6.; 25 (0).1996.57-66. 1996.
Code: 8

Brayden, D., Creed, E., O'Connell, A., Leipold, H., Agarwal, R., and Leone-Bay, A. Heparin absorption across the intestine: effects of sodium N-[8-(2- hydroxybenzoyl)amino]caprylate in rat in situ intestinal instillations and in Caco-2 monolayers. Pharm Res 14(12):1772-9. 1997.
Code: 8

Bremmer, D. R., Trower, S. L., Bertics, S. J., Besong, S. A., Bernabucci, U., and Grummer, R. R. Etiology of fatty liver in dairy cattle: effects of nutritional and hormonal status on hepatic microsomal triglyceride transfer protein. J Dairy Sci 83(10):2239-51. 2000.
Code: 5

Breslin, W. J., Cieszlak, F. S., Zablotny, C. L., Corley, R. A., Verschuuren, H. G., and Yano, B. L. Evaluation of the developmental toxicity of inhaled dipropylene glycol monomethyl ether (DPGME) in rabbits and rats. Occup Hyg 1996;2:161-70 . 1996.
Code: 8

Bruyas, J. F., Martins-Ferreira, C., Fieni, F., and Tainturier, D. The effect of propanediol on the morphology of fresh and frozen equine embryos. Equine Vet J Suppl (25):80-4. 1997.
Code: 8

Burkhart, J., Piacitelli, C., Schwegler-Berry, D., and Jones, W. Environmental study of nylon flocking process. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH PART A; 57 (1).1999.1-23.AB - BIOSIS COPYRIGHT: BIOL ABS.Environmental measurements for a variety of gas, particulate, and microbiological agents have been made in order to characterize exposures associated with the nylon flocking process.Of all agents measured, particulate is the predominant exposure.Levels of total particulate ranged from 0.1 to 240 mg/m3 ( x = 11.4 mg/m3).Average respirable particulate was 2.2 mg/m3, ranging from 0.5 to 39.9 mg/m3.Highest levels of particulates were found in the flocking room, and direct reading dust measuremen veral of which were linked directly to the process.Of special interest were elongated respirable particles, which by microscopic analysis, complemented with melting-point determination, were found to be shreds of nylon. 1999.
Code: 8

Cameron, D. C., Altaras, N. E., Hoffman, M. L., and Shaw, A. J. Metabolic engineering of propanediol pathways. Biotechnol Prog 14(1):116-25. 1998.
Code: 8

Carney, E. W., Crissman, J. W., Liberacki, A. B., Clements, C. M., and Breslin, W. J. Assessment of adult and neonatal reproductive parameters in Sprague-Dawley rats exposed to propylene glycol monomethyl ether vapors for two generations. Toxicol Sci 1999 Aug;50(2):249-58 . 1999.
Code: 8

Carney, E. W. and Johnson, K. A. Comparative developmental toxicity of the glycol ether metabolites, methoxyacetic acid and methoxypropionic acid. Teratology 2000 Jun;61(6):454 . 2000.
Code: 8

Chapin, R. E., Sloane, R. A., and Haseman, J. K. The relationships among reproductive endpoints in Swiss mice, using the reproductive assessment by Continuous Breeding database. Fundam Appl Toxicol 1997 Aug;38(2):129-42 . 1997.
Code: 8

Chapin, R. E. and Sloane, R. A. Reproductive assessment by continuous breeding: evolving study design and summaries of ninety studies. Environ Health Perspect 1997 Feb;105 Suppl 1:199-205 . 1997.
Code: 8

Chicu, S. A. and Berking, S. Interference with metamorphosis induction in the marine cnidaria Hydractinia echinata (hydrozoa): A structure-activity relationship analysis of lower alcohols, aliphatic and aromatic hydrocarbons, thiophenes, tributyl tin and crude oil. Chemosphere; 34 (8).1997.1851-1866. 1997.
Code: 8

Chou C-H, S. J., Holler, J., and De Rosa, C. T. Minimal risk levels (MRLs) for hazardous substances. Journal of Clean Technology Environmental Toxicology and Occupational Medicine; 7 (1).1998.1-24. 1998.
Code: 8

Christensen, J. O., Grummer, R. R., Rasmussen, F. E., and Bertics, S. J. Effect of method of delivery of propylene glycol on plasma metabolites of feed-restricted cattle. J Dairy Sci 80(3):563-8. 1997.
Code: 8

Cicolella, A. [Evaluation of risks of glycol ethers for the reproductive health]. Sante Publique 1997 Jun;9(2):157-83 . 1997.
Code: 8

Colin, T., Bories, A., and Moulin, G. Inhibition of Clostridium butyricum by 1,3-propanediol and diols during glycerol fermentation. Appl Microbiol Biotechnol 54(2):201-5. 2000.
Code: 8

Cook, G., Papich, M. G., Roberts, M. C., and Bowman, K. F. Pharmacokinetics of cisapride in horses after intravenous and rectal administration. Am J Vet Res 58(12):1427-30. 1997.
Code: 8

Corley, R. A., Crissman, J. W., Redmond, J. M., McGuirk, R. J., Cieszlak, F. S., and Stott, W. T. Adaptive Metabolic and Pathologic Changes following Chronic Inhalation of Propylene Glycol Monomethyl Ether in Rats and Mice. Occupational Hygiene, Vol.2, Nos.1-6, pages 319-328, 24 references, 1996 AB - The temporal relationships between propylene-glycol-monomethyl-ether (107982) (PGME) induced metabolic and morphological changes in rats and mice which have been chronically exposed to up to 3,000 parts per million (ppm) of PGME vapors were characterized.B6C3F1-mice and F344-rats were exposed to 300, 1,000, or 3,000ppm for 6 hours a day, 5 days a week, for up to 2 years.Results indicated that there is potential for adaptive biochemical and cellular changes in response to chemical exposure to modify the toxicity of PGME in rats and mice.Nearly all inhaled PGME was absorbed, resulting in high systemic levels of PGME.These levels may result in central nervous system depression and the clinically observable sedation of exposed animals.A disruption in male rats was noted in the processing of alpha2micro-globulin resulting in mild degenerative effects in renal tubule epithelial cells.The pronounced sedation of rats and mice exposed to 3,000ppm resolved by the second week of exposure.The induction of O-dealkylase activity in these animals suggests an increase in the potential of metabolized PGME via its major metabolic route to propylene-glycol and then to carbon-dioxide.Exposed animals may also have effectively enhanced PGME metabolism by increasing the number of hepatocytes in response to PGME exposure resulting in the increase in liver weights.Clearly defined, treatment related renal effects were only observed in male rats.The authors conclude that high concentrations of PGME cause an adaptive hepatic response in both sexes of rats and mice that is partially reversed in rats. 1996.
Code: 8

Cornwell, P. A., Barry, B. W., Bouwstra, J. A., and Gooris, G. S. Modes of action of terpene penetration enhancers in human skin; differential scanning calorimetry, small-angle x-ray diffraction and enhancer uptake studies. Int.J.Pharm.; VOL 127 ISS Jan 15 1996, P9-26, (REF 50) . 1996.
Code: 8

Corsi, S. R., Booth, N. L., and Hall, D. W. Aircraft and runway deicers at General Mitchell International Airport, Milwaukee, Wisconsin, USA. 1. Biochemical oxygen demand and dissolved oxygen in receiving streams. Environ Toxicol Chem 20(7):1474-82. 2001.
Code: 8

Corsi, S. R., Hall, D. W., and Geis, S. W. Aircraft and runway deicers at General Mitchell International Airport, Milwaukee, Wisconsin, USA. 2. Toxicity of aircraft and runway deicers. Environ Toxicol Chem 20(7):1483-90. 2001.
Code: 8

Daniel, R., Bobik, T. A., and Gottschalk, G. Biochemistry of coenzyme B12-dependent glycerol and diol dehydratases and organization of the encoding genes. FEMS Microbiol Rev 22(5):553-66. 1998.
Code: 8

Davison, S., Benson, C. E., Ziegler, A. F., and Eckroade, R. J. Evaluation of disinfectants with the addition of antifreezing compounds against nonpathogenic H7N2 avian influenza virus. Avian Dis 43(3):533-7. 1999.
Code: 8

De Bortoli, M., Ghezzi, E., Knoppel, H., and Vissers, H. A new test chamber to measure material emissions under controlled air velocity. Environmental Science & Technology; 33 (10).1999.1760-1765. 1999.
Code: 8

Debellefontaine, H., Chakchouk, M., Foussard, J. N., Tissot, D., and Striolo, P. Treatment of organic aqueous wastes: Wet air oxidation and Wet Peroxide Oxidation. Environmental Pollution; 92 (2).1996.155-164. 1996.
Code: 8

Dib, R., Chobert, J. M., Dalgalarrondo, M., and Haertle, T. Secondary structure changes and peptic hydrolysis of beta-lactoglobulin induced by diols. Biopolymers 39(1):23-30. 1996.
Code: 8

Ding, P., Xu, H., Wei, G., and Zheng, J. Microdialysis sampling coupled to HPLC for transdermal delivery study of ondansetron hydrochloride in rats. Biomed Chromatogr 14(3):141-3. 2000.
Code: 8

Doenicke, A., Roizen, M. F., Hoernecke, R., Mayer, M., Ostwald, P., and Foss, J. Haemolysis after etomidate: comparison of propylene glycol and lipid formulations. Br J Anaesth 79(3):386-8. 1997.
Code: 8

Dorr, R. T., Bellamy, W., Liddil, J. D., Baker, A., and Bair, K. W. Correlation of cytotoxicity and protein-associated DNA strand breaks for 2-(arylmethylamino)-1,3-propanediols. Anticancer Drug Des 1998 Oct;13(7):825-35 . 1998.
Code: 8

el-Fiky, M. A. Hyperglycemic effect of a neurotoxic fraction (F3) from Naja haje venom: role of hypothalamo-pituitary adrenal axis (HPA). J Nat Toxins 8(2):203-12. 1999.
Code: 8

Elliott, R. C., Jones, J. R., McElvenny, D. M., Pennington, M. J., Northage, C., Clegg, T. A., Clarke, S. D., Hodgson, J. T., and Osman, J. Spontaneous abortion in the British semiconductor industry: An HSE investigation. Health and Safety Executive [see comments]. Am J Ind Med 1999 Nov;36(5):557-72 . 1999.
Code: 8

Emiliani, S., Van den Bergh, M., Vannin, A. S., Biramane, J., and Englert, Y. Comparison of ethylene glycol, 1,2-propanediol and glycerol for cryopreservation of slow-cooled mouse zygotes, 4-cell embryos and blastocysts. Hum Reprod 15(4):905-10. 2000.
Code: 8

Farshid, A. A., Rajan, A., and Nair, M. K. Ultrastructural pathology of the lymphoid organs in Japanese quail embryos in experimental ochratoxicosis. Indian Veterinary Journal; 73 (12).1996.1225-1230. 1996.
Code: 8

Farshid, A. A. and Rajan, R. Assessment of the cell-mediated immune response of Japanese quails in experimental ochratoxicosis. Indian Veterinary Journal; 73 (11).1996.1117-1121. 1996.
Code: 8

Farshid, A. A., Rajan, A., and Nair, M. K. Ultrastructural pathology of the lymphoid organs in Japanese quail embryos in experimental ochratoxicosis. Journal of Veterinary and Animal Sciences; 27 (1).1998.21-26. 1998.
Code: 8

Gabiga, H., Cal, K., and Janicki, S. Effect of penetration enhancers on isosorbide dinitrate penetration through rat skin from a transdermal therapeutic system. Int J Pharm 199(1):1-6. 2000.
Code: 8

Gallacher, G. and Maibach, H. I. Is atopic dermatitis a predisposing factor for experimental acute irritant contact dermatitis? Contact Dermatitis; 38 (1).1998.1-4. 1998.
Code: 8

Gao, D. Y., Neff, K., Xiao, H. Y., Matsubayashi, H., Cui, X. D., Bonderman, P., Bonderman, D., Harvey, K., McIntyre, J. A., Critser, J., Miraglia, C. C., and Reid, T. Development of optimal techniques for cryopreservation of human platelets. I. Platelet activation during cold storage (at 22 and 8 degrees C) and cryopreservation. Cryobiology 38(3):225-35. 1999.
Code: 8

Garnier, R. [Acute poisoning with industrial products]. Rev Prat 50(4):377-84. 2000.
Code: 8

Garzon-De la Mora, P., Garcia-Lopez, P. M., Garcia-Estrada, J., Navarro-Ruiz, A., Villanueva-Michel, T., Villarreal-de Puga, L. M., and Casillass-Ochoa, J. Casimiroa edulis seed extracts show anticonvulsive properties in rats. J Ethnopharmacol 68(1-3):275-82. 1999.
Code: 8

George, J. and Murray, E. Toxicological Profile for Ethylene Glycol and Propylene Glycol. Govt Reports Announcements & Index (GRA&I), Issue 05, 1998 . 1997.
Code: 7

Germann, P. G., Ockert, D., and Heinrichs, M. Pathology of the oropharyngeal cavity in six strains of rats: Predisposition of Fischer 344 rats for inflammatory and degenerative changes. Toxicologic Pathology; 26 (2).1998.283-289. 1998.
Code: 8

Gilmore, J. A., Liu, J., Gao, D. Y., and Critser, J. K. Determination of optimal cryoprotectants and procedures for their addition and removal from human spermatozoa. Hum Reprod 1997 Jan;12(1):112-8 . 1997.
Code: 8

Glover, M. L. and Reed, M. D. Propylene glycol: safe diluent that continues to cause harm. Pharmacotherapy; VOL 16 ISS 4 1996, P690-693, (REF 18) . 1996.
Code: 5

Godwin, D. A. and Michniak, B. B. Influence of drug lipophilicity on terpenes as transdermal penetration enhancers. Drug Dev Ind Pharm 25(8):905-15. 1999.
Code: 8

Gotvajn, A. Z. and Zagorc-Koncan, J. Laboratory simulation of biodegradation of chemicals in surface waters: closed bottle and respirometric test. Chemosphere 38(6):1339-46. 1999.
Code: 8

Groning, R. and Kuhland, U. Pulsed release of nitroglycerin from transdermal drug delivery systems. Int J Pharm 193(1):57-61. 1999.
Code: 8

group, Bibra working. Propylene Glycol. TA:Toxicity profile.BIBRA Toxicology International PG:16 p YR:1996 IP: VI. 1996.
Code: 7

group, N. T. P. working. Toxicology and carcinogenesis studies of 1-Chloro-2-Propanol (Technical grade) in F344/N rats and B6C3F1 mice (drinking water studies). TA:National Toxicology Program Technical Report Series PG:264 p YR:1998 IP: VI:477 . 1998.
Code: 8

Guerriero, F. J., Seaman, C. W., Sprague, G. L., Sutton, T. J., and Toseland, C. D. Developmental toxicity in rats treated orally with 2-(2-iodoethyl)-1,3-propanediol diacetate. Toxicologist 2000 Mar;54(1):291-2 . 2000.
Code: 8

Guin, J. D. Contact Dermatitis and Other Contact Reactions. Lieberman, P.And J.A.Anderson (Ed.).Current Clinical Practice: Allergic Diseases: Diagnosis and Treatment.X+402p.Humana Press Inc.: Totowa, New Jersey, USA.Isbn 0-89603-367-8.; 0 (0).1997.233-254. 1997.
Code: 8

Gupta, A. K., Einarson, T. R., Summerbell, R. C., and Shear, N. H. Overview of topical antifungal therapy in dermatomycoses: North American perspective. Drugs; VOL 55 ISS May 1998, P645-674, (REF 447) . 1998.
Code: 8

Gupta, G., Dawn, G., and Forsyth, A. The trend of allergic contact dermatitis in the elderly population over a 15-year period. Contact Dermatitis; 41 (1).1999.48-50. 1999.
Code: 8

Hall, S. and Godwin-Saad, E. Effects of Pollutants on Freshwater Organisms. Water Environment Research; 68 (4).1996.776-784. 1996.
Code: 8

Hattori, T. and Maehashi, H. Increase in Calcium Influx by Propylene Glycol at Mouse Motor Nerve Terminals. In Vitro Toxicology.A Journal of Molecular and Cellular Toxicology, Vol.9, No.4, pages 373-375, 10 references, 1996 . 1996.
Code: 5

Hattori, T. and Maehashi, H. Facilitation of calcium influx by propylene glycol through the voltage- dependent calcium channels in PC12 cells. Res Commun Mol Pathol Pharmacol 105(3):179-84. 1999.
Code: 5

Hattori, T. and Maehashi, H. Rise in intracellular calcium concentration by propylene glycol in PC12 cells. Int J Neurosci 99(1-4):151-7. 1999.
Code: 5

Hattori, T., Maehashi, H., Miyazawa, T., and Naito, M. Enhancement of dopamine release by propylene glycol in PC12 cells. Res Commun Mol Pathol Pharmacol 107(3-4):323-9. 2000.
Code: 5

Havemann, G. D., Sampson, E. M., and Bobik, T. A. PduA is a shell protein of polyhedral organelles involved in coenzyme B(12)-dependent degradation of 1,2-propanediol in Salmonella enterica serovar typhimurium LT2. J Bacteriol 184(5):1253-61. 2002.
Code: 8

Heylings, J. R., Clowes, H. M., Cumberbatch, M., Dearman, R. J., Fielding, I., Hilton, J., and Kimber, I. Sensitization to 2,4-dinitrochlorobenzene: influence of vehicle on absorption and lymph node activation. Toxicology 109(1):57-65. 1996.
Code: 8

Ho, H. O., Chen, L. C., Lin, H. M., and Sheu, M. T. Penetration enhancement by menthol combined with a solubilization effect in a mixed solvent system. J Control Release 51(2-3):301-11. 1998.
Code: 8

Hostynek, J. J. and Magee, P. S. Fragrance allergens: Classification and ranking by QSAR. Toxicology in Vitro; 11 (4).1997.377-384. 1997.
Code: 8

Huang, K., Rudolph, F. B., and Bennett, G. N. Characterization of methylglyoxal synthase from Clostridium acetobutylicum ATCC 824 and its use in the formation of 1, 2- propanediol. Appl Environ Microbiol 65(7):3244-7. 1999.
Code: 8

Imamura, S., Nozawa, I., Imamura, M., and Murakami, Y. Pathogenesis of experimental aural cholesteatoma in the chinchilla. ORL J Otorhinolaryngol Relat Spec 61(2):84-91. 1999.
Code: 5

Inoue, K., Nakazawa, K., Fujimori, K., Ohno, Y., Takanaka, A., Itagaki, H., Kato, S., Kobayashi, T., and Kuroiwa, Y. Evaluation of stinging-inducing chemicals using cultured neuronal cells: An electrophysiological approach. Toxicology in Vitro; 10 (4).1996.455-462. 1996.
Code: 8

Ishidate, M. Jr, Miura, K. F., and Sofuni, T. Chromosome aberration assays in genetic toxicology testing in vitro. Mutation Research; 404 (1-2).1998.167-172. 1998.
Code: 8

Ishiwata, H., Nishijima, M., Fukasawa, Y., Ito, Y., and Yamada, T. Evaluation of the contents of BHA, BHT, propylene glycol, and sodium saccharin in foods and estimation of daily intake based on the results of official inspection in Japan in fiscal year 1994. Journal of the Food Hygienic Society of Japan; 39 (2).1998.89-100. 1998.
Code: 8

Jaiswal, J., Poduri, R., and Panchagnula, R. Transdermal delivery of naloxone: ex vivo permeation studies. Int J Pharm 179(1):129-34. 1999.
Code: 8

Janik, M., Kleinhans, F. W., and Hagedorn, M. Overcoming a permeability barrier by microinjecting cryoprotectants into zebrafish embryos (Brachydanio rerio). Cryobiology 2000 Aug;41(1):25-34 . 2000.
Code: 8

Jewgenow, K., Penfold, L. M., Meyer, H. H., and Wildt, D. E. Viability of small preantral ovarian follicles from domestic cats after cryoprotectant exposure and cryopreservation. J Reprod Fertil 112(1):39-47. 1998.
Code: 8

Johnson, C. L., Pechonick, E., Park, S. D., Havemann, G. D., Leal, N. A., and Bobik, T. A. Functional genomic, biochemical, and genetic characterization of the Salmonella pduO gene, an ATP:cob(I)alamin adenosyltransferase gene. J Bacteriol 183(5):1577-84. 2001.
Code: 8

Johnson, W. Final report on the safety assessment of Propylene Glycol (PG) Dicaprylate, PG Dicaprylate-Dicaprate, PG Dicocoate, PG Dipelargonate, PG Isostearate, PG Laurate, PG Myristate, PG Oleate, PG Oleate SE, PG Dioleate, PG Dicaprate, PG Diisostearate, and PG Dilaurate. International Journal of Toxicology; 18 (Suppl.2).1999.35-52. 1999.
Code: 8

Jones, T. D. On 'toxicity equivalent factors' and 'relative potency' to account for differential toxicity and carcinogenicity: Concerns about uncommon effects of dose in animal experiments and environmental exposures to humans. Environmetrics; 9 (5).1998.525-539. 1998.
Code: 8

Kang, L., Jun, H. W., and McCall, J. W. Physicochemical studies of lidocaine-menthol binary systems for enhanced membrane transport. Int J Pharm 206(1-2):35-42. 2000.
Code: 8

Karami, K. and Beronius, P. On iontophoretic delivery enhancement: ionization and mobility of lidocaine hydrochloride in propylene glycol. Int.J.Pharm.; VOL 168 ISS Jun 8 1998, P85-95, (REF 17) . 1998.
Code: 8

Karran, G. and Legge, M. Non-enzymatic formation of formaldehyde in mouse oocyte freezing mixtures. Hum Reprod 11(12):2681-6. 1996.
Code: 8

Kataoka, M., Sasaki, M., Hidalgo, A. R., Nakano, M., and Shimizu, S. Glycolic acid production using ethylene glycol-oxidizing microorganisms. Biosci Biotechnol Biochem 65(10):2265-70. 2001.
Code: 8

Kedzierewicz, F., Darme, X., Etienne, A., Lemut, J., Hoffman, M., and Maincent, P. Preparation of silicone microspheres by emulsion polymerization: application to the encapsulation of a hydrophilic drug. J Microencapsul 15(2):227-36. 1998.
Code: 8

Kellner, D. L. Sorption of the Aircraft Deicing Fluid Component Methyl-Benzotriazole in Soil. /u0014 . 1999.
Code: 8

Kerai, M. Dj, Waterfield, C. J., and Timbrell, J. A. The Effects of Propylene Glycol on Paracetamol Toxicity in Hamsters. Annual Progress of the British Toxological Society, Warwick, England, Uk, March 24-26, 1997.Human & Experimental Toxicology; 16 (7).1997.407. 1997.
Code: 9

Kimber, I., Dearman, R. J., and Basketter, D. A. Estimation of relative skin sensitization potency using the local lymph node assay. Annual Congress of the British Toxicology Society, Stoke on Trent, England, Uk, April 18-21, 1999.Yhuman & Experimental Toxicology; 18 (8).1999.524. 1999.
Code: 8

Kiriyama, A., Sugahara, M., Yoshikawa, Y., Kiso, Y., and Takada, K. Bioavailability of oral dosage forms of a new HIV-1 protease inhibitor, KNI-272, in beagle dogs. Biopharm.Drug Dispos.; VOL 17 ISS Mar 1996, P125-134, (REF 20) . 1996.
Code: 8

Kolloffel, W. J., Weekers, L. E., and Goldhoorn, P. B. Pharmacokinetics of propylene glycol after rectal administration. Pharm World Sci 18(3):109-13. 1996.
Code: 5

Kowalczyk, C. L., Stachecki, J. J., Schultz, J. F., Leach, R. E., and Armant, D. R. Effects of alcohols on murine preimplantation development: Relationship to relative membrane disordering potency. Alcoholism Clinical and Experimental Research; 20 (3).1996.566-571. 1996.
Code: 5

Kruszewski, F. H., Walker, T. L., and Dipasquale, L. C. Evaluation of a human corneal epithelial cell line as an in vitro model for assessing ocular irritation. Fundamental and Applied Toxicology; 36 (2).1997.130-140. 1997.
Code: 8

Krzymien, M., Day, M., Shaw, K., Mohmad, R., and Sheehan, S. The role of feed composition on the composting process. II. Effect on the release of volatile organic compounds and odours. Journal of Environmental Science and Health Part a Toxic-Hazardous Substances & Environmental Engineering; 34 (6).1999.1369-1396. 1999.
Code: 8

Kucherenko, Y. U. and Moiseev, V. A. The use of 1H-NMR spectroscopy and refractometry for investigation of the distribution of nonelectrolytes of N-alcohol series between human red blood cells and extracellular medium. Membr Cell Biol 13(5):633-44. 2000.
Code: 8

Kulkarni, A. S. and Hopfinger, A. J. Membrane-interaction QSAR analysis: Application to the estimation of eye irritation by organic compounds. Pharmaceutical Research (New York); 16 (8).1999.1245-1253. 1999.
Code: 8

Kusunoki, J., Kai, A., Yanagawa, Y., Monma, C., Shingaki, M., Obata, H., Itoh, T., Ohta, K., Kudoh, Y., and Nakamura, A. [Biochemical and molecular characterization of Salmonella ser. enteritidis phage type 1 isolated from food poisoning outbreaks in Tokyo]. Kansenshogaku Zasshi 73(5):437-44. 1999.
Code: 8

Kuznetsova, N., Chi, S. L., and Leikin, S. Sugars and polyols inhibit fibrillogenesis of type I collagen by disrupting hydrogen-bonded water bridges between the helices. Biochemistry 37(34):11888-95. 1998.
Code: 8

LaDou, J. and Rohm, T. The international electronics industry. Int J Occup Environ Health 1998 Jan-Mar;4(1):1-18 . 1998.
Code: 8

Laitinen, J. Biomonitoring of technical grade 1-alkoxy-2-propanol acetates by analysing urinary 2-alkoxypropionic acids. Sci Total Environ 1997 Jun 20;199(1-2):31-9 . 1997.
Code: 8

Laitinen, J., Liesivuori, J., and Savolainen, H. Biological monitoring of occupational exposure to 1-methoxy-2-propanol. J Chromatogr B Biomed Sci Appl 694(1):93-8. 1997.
Code: 8

LaKind, J. S., McKenna, E. A., Hubner, R. P., and Tardiff, R. G. A review of the comparative mammalian toxicity of ethylene glycol and propylene glycol. Crit Rev Toxicol 29(4):331-65. 1999.
Code: 7

Lanigan, R. S. Special report: reproductive and developmental toxicity of ethylene glycol and its ethers. Int J Toxicol 1999;18(Suppl 2):53-67 . 1999.
Code: 8

Lansdown, A. B. and Taylor, A. Zinc and titanium oxides: promising UV-absorbers but what influence do they have on the intact skin? Int.J.Cosmet.Sci.; VOL 19 ISS 4 1997, P167-172, (REF 10) . 1997.
Code: 8

Larrucea, E., Arellano, A., Santoyo, S., and Ygartua, P. Combined effect of oleic acid and propylene glycol on the percutaneous penetration of tenoxicam and its retention in the skin. Eur J Pharm Biopharm 52(2):113-9. 2001.
Code: 8

Lee, B. J., Lee, T. S., Cha, B. J., Kim, S. H., and Kim, W. B. Percutaneous absorption and histopathology of a poloxamer-based formulation of capsaicin analog. Int.J.Pharm.; VOL 159 ISS Dec 15 1997, P105-114, (REF 21) . 1997.
Code: 8

Lee, B. J., Cui, J. H., Parrott, K. A., Ayres, J. W., and Sack, R. L. Percutaneous absorption and model membrane variations of melatonin in aqueous-based propylene glycol and 2-hydroxypropyl-beta-cyclodextrin vehicles. Arch Pharm Res 21(5):503-7. 1998.
Code: 8

Leone-Bay, A., Leipold, H., Agarwal, R., Rivera, T., and Baughman, R. A. Evolution of an oral heparin dosing solution. Drugs Future; VOL 22 ISS Aug 1997, P885-891, (REF 22) . 1997.
Code: 8

Leppik, I. E. Role of new and established antiepileptic drugs. Epilepsia 1998;39 Suppl 5:2-6 . 1998.
Code: 8

Levang, A. K., Zhao, K., and Singh, J. Effect of ethanol/propylene glycol on the in vitro percutaneous absorption of aspirin, biophysical changes and macroscopic barrier properties of the skin. Int J Pharm 181(2):255-63. 1999.
Code: 8

Li, B., Pinch, H., and Birt, D. F. Influence of vehicle, distant topical delivery, and biotransformation on the chemopreventive activity of apigenin, a plant flavonoid, in mouse skin. Pharm Res 13(10):1530-4. 1996.
Code: 8

Li, B. and Birt, D. F. In vivo and in vitro percutaneous absorption of cancer preventive flavonoid apigenin in different vehicles in mouse skin. Pharm.Res.; VOL 13 ISS Nov 1996, P1710-1715, (REF 9) . 1996.
Code: 8

Liesivuori, J., Laitinen, J., and Savolainen, H. Rat model for renal effects of 2-alkoxyalcohols and their acetates. Arch Toxicol 73(4-5):229-32. 1999.
Code: 5

Lin, S. Y., Duan, K. J., and Lin, T. C. Microscopic FT-IR/DSC system used to simultaneously investigate the conversion process of protein structure in porcine stratum corneum after pretreatment with skin penetration enhancers. Methods Find Exp Clin Pharmacol 18(3):175-81. 1996.
Code: 8

Liu, C. J., Ueda, M., Kosaka, S., Hirata, T., Yokomise, H., Inui, K., Hitomi, S., and Wada, H. A newly developed solution enhances thirty-hour preservation in a canine lung transplantation model. J Thorac Cardiovasc Surg 112(3):569-76. 1996.
Code: 8

Longo, D. L., Duffey, P. L., Kopp, W. C., Heyes, M. P., Alvord, W. G., Sharfman, W. H., Schmidt, P. J., Rubinow, D. R., and Rosenstein, D. L. Conditioned immune response to interferon-gamma in humans. Clin Immunol 90(2):173-81. 1999.
Code: 8

Loskutoff, N. M., Simmons, H. A., Goulding, M., Thompson, G., De Jongh, T., and Simmons, L. G. Species and individual variations in cryoprotectant toxicities and freezing resistances of epididymal sperm from African antelope. Animal Reproduction Science; 42 (1-4).1996.527-535. 1996.
Code: 8

Louik, C., Frumkin, H., Ellenbecker, M. J., Goldman, R. H., Werler, M. M., and Mitchell, A. A. Use of a job-exposure matrix to assess occupational exposures in relation to birth defects. J Occup Environ Med 42(7):693-703. 2000.
Code: 8

Machate, T. and Kettrup, A. Spectrophotometric method for the determination of 1,2-propylene glycol. Fresenius' Journal of Analytical Chemistry; 360 (1).1998.137-138. 1998.
Code: 8

Mahadevan, M. M., McIntosh, Q., Miller, M. M., Breckinridge, S. M., Maris, M., and Moutos, D. M. Formaldehyde in cryoprotectant propanediol and effect on mouse zygotes. Hum Reprod 1998 Apr;13(4):979-82 . 1998.
Code: 8

Mailhes, J. B., Young, D., and London, S. N. 1,2-propanediol-induced premature centromere separation in mouse oocytes and aneuploidy in one-cell zygotes. Biol Reprod 57(1):92-8. 1997.
Code: 3, 6

Malandain, H. and Cano, Y. An Enzymatic Assay for the Emergency Diagnosis of Propylene Glycol Intoxication. 48th Annual Meeting of the American Association for Clinical Chemistry, Inc., Chicago, Illinois, USA, July 28-August 1, 1996.Clinical Chemistry; 42 (6 Part 2).1996.S213. 1996.
Code: 8

Mallidis, C., Phelan, D., Coles, M., and Jones, G. Does the composition of propane-1,2-diol alter over time? J Assist Reprod Genet 13(1):53-5. 1996.
Code: 8

Malonne, H., Fontaine, J., and Moes, A. In vitro/in vivo characterization of a tramadol HCl depot system composed of monoolein and water. Biol Pharm Bull 23(5):627-31. 2000.
Code: 8

Manganaro, A. M. and Wertz, P. W. The effects of permeabilizers on the in vitro penetration of propranolol through porcine buccal epithelium. Mil Med 161(11):669-72. 1996.
Code: 8

Massaad, C., Entezami, F., Massade, L., Benahmed, M., Olivennes, F., Barouki, R., and Hamamah, S. How can chemical compounds alter human fertility? Eur J Obstet Gynecol Reprod Biol 100(2):127-37. 2002.
Code: 8

Matthews, H. B. Chemical Metabolism and Toxicokinetics. Crisp Data Base National Institutes Of Health . 1996.
Code: 8

Mauldin, R. E., Goodall, M. J., Volz, S. A., Griffin, D. L., Petty, E. J., and Johnston, J. J. Zinc phosphide residue determination in alfalfa (Medicago sativa). Journal of Agricultural and Food Chemistry; 45 (6).1997.2107-2111. 1997.
Code: 8

McCain, W. C., Lee, R., Johnson, M. S., Whaley, J. E., Ferguson, J. W., Beall, P., and Leach, G. Acute oral toxicity study of pyridostigmine bromide, permethrin, and DEET in the laboratory rat. Journal of Toxicology and Environmental Health; 50 (2).1997.113-124. 1997.
Code: 8

McClanahan, S., Hunter, J., Murphy, M., and Valberg, S. Propylene glycol toxicosis in a mare. Veterinary and Human Toxicology; 40 (5).1998.294-296. 1998.
Code: 5

Mead, C. and Pentreath, V. W. Evaluation of toxicity indicators in rat primary astrocytes, C6 glioma and human 1231N1 astrocytoma cells: Can gliotoxicity be distinguished from cytotoxicity? Archives of Toxicology; 72 (6).1998.372-380. 1998.
Code: 8

Medlicott, N. J., Foster, K. A., Audus, K. L., Gupta, S., and Stella, V. J. Comparison of the effects of potential parenteral vehicles for poorly water soluble anticancer drugs (organic cosolvents and cyclodextrin solutions) on cultured endothelial cells (HUV-EC). J Pharm Sci 87(9):1138-43. 1998.
Code: 8

Meshitsuka, S., Inoue, M., Seki, A., Koeda, T., and Takeshita, K. Screening of urine by one-dimensional and pulsed-field gradient two- dimensional 1H NMR spectroscopy: intoxication by propylene glycol in an infant patient. Clin Chim Acta 279(1-2):47-54. 1999.
Code: 8

Mirochnick, M., Clarke, D. F., McNamara, E. R., and Cabral, H. Bioequivalence of a propylene glycol-based liquid dapsone preparation and dapsone tablets. Am J Health Syst Pharm 57(19):1775-7. 2000.
Code: 8

Mitchell, H. L. Toxicity of Tolyltriazole to Gram-Positive Coccus Microorganisms. /u0019 . 2000.
Code: 8

Miyoshi, S., Pate, J. L., and Palmquist, D. L. Effects of propylene glycol drenching on energy balance, plasma glucose, plasma insulin, ovarian function and conception in dairy cows. Anim Reprod Sci 68(1-2):29-43. 2001.
Code: 5

Mochimaru, M. and Sakurai, H. Effects of organic solvents and tentoxin on enzyme-bound ATP synthesis in isolated chloroplast coupling factor 1. Photosynthesis Research; 57 (3).1998.305-315. 1998.
Code: 8

Mori, T., Sakimoto, M., Kagi, T., and Sakai, T. Secondary alcohol dehydrogenase from a vinyl alcohol oligomer-degrading Geotrichum fermentans; stabilization with Triton X-100 and activity toward polymers with polymerization degrees less than 20. 1998.
Code: 8

Morshed, K. M., Jain, S. K., and McMartin, K. E. Propylene glycol-mediated cell injury in a primary culture of human proximal tubule cells. Toxicol Sci 46(2):410-7. 1998.
Code: 5

Moser, K., Kriwet, K., Froehlich, C., Kalia, Y. N., and Guy, R. H. Supersaturation: enhancement of skin penetration and permeation of a lipophilic drug. Pharm Res 18(7):1006-11. 2001.
Code: 8

Mukaida, T., Wada, S., Takahashi, K., Pedro, P. B., An, T. Z., and Kasai, M. Vitrification of human embryos based on the assessment of suitable conditions for 8-cell mouse embryos. Hum Reprod 13(1O):2874-9. 1998.
Code: 8

Mura, P., Faucci, M. T., Bramanti, G., and Corti, P. Evaluation of transcutol as a clonazepam transdermal permeation enhancer from hydrophilic gel formulations. Eur J Pharm Sci 9(4):365-72. 2000.
Code: 8

Murakami, T., Yoshioka, M., Yumoto, R., Higashi, Y., Shigeki, S., Ikuta, Y., and Yata, N. Topical delivery of keloid therapeutic drug, tranilast, by combined use of oleic acid and propylene glycol as a penetration enhancer: evaluation by skin microdialysis in rats. J Pharm Pharmacol 50(1):49-54. 1998.
Code: 8

Mushrush, G. W., Basak, S. C., Slone, J. E., Beal, E. J., Basu, S., Stalick, W. M., and Hardy, D. R. Computational Study of the Environmental Fate of Selected Aircraft Fuel System Deicing Compounds. Journal of Environmental Science and Health.Part A: Environmental Science and Engineering and Toxic and Hazardous Substance Control, Vol.A32, No.8, pages 2201-2211, 17 references, 1997 . 1997.
Code: 8

Neurath, G., Franke, S., Francke, W., and Marquardt, H. Mutagenicity of Trichlorinated Dipropylether Isomers. 39th Spring Meeting of the German Society for Experimental and Clinical Pharmacology and Toxicology, Mainz, Germany, March 17-19, 1998.Naunyn-Schmiedeberg's Archives of Pharmacology; 357 (4 Suppl.).1998.R142. 1998.
Code: 8

Newton, H., Fisher, J., Arnold, J. R., Pegg, D. E., Faddy, M. J., and Gosden, R. G. Permeation of human ovarian tissue with cryoprotective agents in preparation for cryopreservation. Hum Reprod 13(2):376-80. 1998.
Code: 8

Niazy, E. M. Differences in penetration enhancing effect of Azone through excised rabbit, rat, hairless mouse, guinea pig and human skins. Int.J.Pharm.; VOL 130 ISS Mar 22 1996, P225-230, (REF 24) . 1996.
Code: 8

Noddegaard, F. and Kennaway, D. J. A method of achieving physiological plasma levels of melatonin in the chicken by oral administration. J Pineal Res 27(3):129-38. 1999.
Code: 8

Nordic steering group for assessment of health effects of, chemicals. Health effects of selected chemicals 4-5. 2,2ï-Oxydiethanol (Diethylene glycol). TA:Nord PG:317-41 YR:1999 IP: VI:15 . 1999.
Code: 8

Ogier de Baulny, B., Labbe, C., and Maisse, G. Membrane integrity, mitochondrial activity, ATP content, and motility of the European catfish (Silurus glanis) testicular spermatozoa after freezing with different cryoprotectants. Cryobiology 39(2):177-84. 1999.
Code: 8

Ogiso, T., Niinaka, N., and Iwaki, M. Mechanism for enhancement effect of lipid disperse system on percutaneous absorption. J Pharm Sci 85(1):57-64. 1996.
Code: 8

Oh, S. Y., Jeong, S. Y., Park, T. G., and Lee, J. H. Enhanced transdermal delivery of AZT (Zidovudine) using iontophoresis and penetration enhancer. J Control Release 51(2-3):161-8. 1998.
Code: 8

Oude Elferink, S. J., Krooneman, J., Gottschal, J. C., Spoelstra, S. F., Faber, F., and Driehuis, F. Anaerobic conversion of lactic acid to acetic acid and 1, 2-propanediol by Lactobacillus buchneri. Appl Environ Microbiol 67(1):125-32. 2001.
Code: 8

Palmer, R., Godwin, D., and McKinney, P. Transdermal Kinetics of a Mercurous Chloride Beauty Cream an in Vitro Human Skin Analysis. Annual Meeting of the North American Congress of Clinical Toxicology, Orlando, Florida, USA, September 9-15, 1998.Journal of Toxicology Clinical Toxicology; 36 (5).1998.528-529. 1998.
Code: 8

Panchagnula, R., Salve, P. S., Thomas, N. S., Jain, A. K., and Ramarao, P. Transdermal delivery of naloxone: effect of water, propylene glycol, ethanol and their binary combinations on permeation through rat skin. Int J Pharm 219(1-2):95-105. 2001.
Code: 8

Parker, M. G., Fraser, G. L., Watson, D. M., and Riker, R. R. Removal of propylene glycol and correction of increased osmolar gap by hemodialysis in a patient on high dose lorazepam infusion therapy. Intensive Care Med 28(1):81-4. 2002.
Code: 8

Patro, N., Mishra, S. K., Chattopadhyay, M., and Patro, I. K. Neurotoxicological effects of deltamethrin on the postnatal development of cerebellum of rat. Journal of Biosciences (Bangalore); 22 (2).1997.117-130. 1997.
Code: 8

Peleg, O., Bar-Oz, B., and Arad, I. Coma in a premature infant associated with the transdermal absorption of propylene glycol. 1998.
Code: 5

Pendergrass, S. M. Determination of glycols in air: Development of sampling and analytical methodology and application to theatrical smokes. American Industrial Hygiene Association Journal July-Aug.1999, Vol.60, No.4, p.452-457.Illus.23 ref. 1999.
Code: 8

Peng, L. and Nimni, M. E. Delivery of erythromycin to subcutaneous tissues in rats by means of a trans-phase delivery system. J Pharm Pharmacol 51(10):1135-41. 1999.
Code: 8

Perkins, M. A., Osborne, R., and Johnson, G. R. Development of an in vitro method for corrosion testing. Fundamental and Applied Toxicology; 31 (1).1996.9-18. 1996.
Code: 8

Perkins, M. A., Osborne, R., Rana, F. R., Ghassemi, A., and Robinson, M. K. Comparison of in vitro and in vivo human skin responses to consumer products and ingredients with a range of irritancy potential. Toxicological Sciences; 48 (2).1999.218-229. 1999.
Code: 8

Pilgram, G. S., Engelsma-van Pelt, A. M., Koerten, H. K., and Bouwstra, J. A. The effect of two azones on the lateral lipid organization of human stratum corneum and its permeability. Pharm Res 17(7):796-802. 2000.
Code: 5

Pillard, D. A. and Dufresne, D. L. Toxicity of formulated glycol deicers and ethylene and propylene glycol to Lactuca sativa, Lolium perenne, Selenastrum capricornutum, and Lemna minor. Archives of Environmental Contamination and Toxicology; 37 (1).1999.29-35. 1999.
Code: 8

Pistoor, F. Hm, Rambukkana, A., Kroezen, M., Lepoittevin, J. P., Bos, J. D., Kapsenberg, M. L., and Das, P. K. Novel predictive assay for contact allergens using human skin explant cultures. American Journal of Pathology; 149 (1).1996.337-343. 1996.
Code: 8

Poppe, L. and Retey, J. Kinetic investigations with inhibitors that mimic the posthomolysis intermediate in the reactions of coenzyme-B12-dependent glycerol dehydratase and diol dehydratase. Eur J Biochem 245(2):398-401. 1997.
Code: 8

Price-Carter, M., Tingey, J., Bobik, T. A., and Roth, J. R. The alternative electron acceptor tetrathionate supports B12-dependent anaerobic growth of Salmonella enterica serovar typhimurium on ethanolamine or 1,2-propanediol. J Bacteriol 183(8):2463-75. 2001.
Code: 8

Proniuk, S., Dixon, S. E., and Blanchard, J. Investigation of the utility of an in vitro release test for optimizing semisolid dosage forms. Pharm Dev Technol 6(3):469-76. 2001.
Code: 8

Qatibi, A. I., Bennisse, R., Jana, M., and Garcia, J. L. Anaerobic degradation of glycerol by Desulfovibrio fructosovorans and D. carbinolicus and evidence for glycerol-dependent utilization of 1,2-propanediol. Current Microbiology; 36 (5).1998.283-290. 1998.
Code: 8

Qian, W., Amin, R. H., and Shichi, H. Cytotoxic metabolite of acetaminophen, N-acetyl-p-benzoquinone imine, produces cataract in DBA2 mice. J Ocul Pharmacol Ther 15(6):537-45. 1999.
Code: 8

Rayburn, W., Christensen, D., and Gonzalez, C. Neurobehavior effects in four strains of mice offspring exposed prenatally to alprazolam (XanaxÑ). Am J Obstet Gynecol 2001 Dec;185(6 Pt 2):S184 . 2001.
Code: 8

Reddy, I. K., Khan, M. A., Wu, W. M., and Bodor, N. S. Permeability of a soft steroid, loteprednol etabonate, through an excised rabbit cornea. J Ocul Pharmacol Ther 12(2):159-67. 1996.
Code: 8

Rice, P. J., Anderson, T. A., and Coats, J. R. The Use of Vegetation to Enhance Biodegradation and Reduce Offsite Movement of Aircraft Deicers. 212th American Chemical Society National Meeting, Orlando, Florida, USA, August 25-29, 1996.Abstracts of Papers American Chemical Society; 212 (1-2).1996.Agro 54. 1996.
Code: 8

Rice, P. J. and Coats, J. R. The Use of Plants for Reducing the Environmental Impact of De-Icing Agents Au - Anderson Ta. 212th American Chemical Society National Meeting, Orlando, Florida, USA, August 25-29, 1996.Abstracts of Papers American Chemical Society; 212 (1-2).1996.Agro 97. 1996.
Code: 8

Rondon, M. R. and Escalante-Semerena, J. C. High levels of transcription factor RpoS (sigma S) in mviA mutants negatively affect 1,2-propanediol-dependent transcription of the cob/pdu regulon of Salmonella typhimurium LT2. FEMS Microbiol Lett 169(1):147-53. 1998.
Code: 8

Rosenkranz, M., Rosenkranz, H. S., and Klopman, G. Intercellular communication, tumor promotion and non-genotoxic carcinogenesis: relationships based upon structural considerations. Mutat Res 1997 Nov 28;381(2):171-88 . 1997.
Code: 8

Saini, M., Dash, S., and Nagpaul, J. P. Hematological Alterations in Propylene Glycol-Dosed Female Rats Are Minimal. Veterinary and Human Toxicology, Vol.38, No.2, pages 81-85, 27 references, 1996 . 1996.
Code: 5

Schenker, M. B. Reproductive health effects of glycol ether exposure in the semiconductor industry. Occup Hyg 1996;2(1-6):367-72 . 1996.
Code: 8

Schneider, I. M., Dobner, B., Neubert, R., and Wohlrab, W. Evaluation of drug penetration into human skin ex vivo using branched fatty acids and propylene glycol. Int.J.Pharm.; VOL 145 ISS Dec 6 1996, P187-196, (REF 32) . 1996.
Code: 8

Schoenberg, T., Veltman, S., and Switzenbaum, M. Kinetics of anaerobic degradation of glycol-based type I aircraft deicing fluids. Biodegradation 12(1):59-68. 2001.
Code: 8

Schramke, J. A., Murphy, S. F., Doucette, W. J., and Hintze, W. D. Prediction of aqueous diffusion coefficients for organic compounds at 25êC. Chemosphere; 38 (10).1999.2381-2406. 1999.
Code: 8

Schwarb, F. P., Imanidis, G., Smith, E. W., Haigh, J. M., and Surber, C. Effect of concentration and degree of saturation of topical fluocinonide formulations on in vitro membrane transport and in vivo availability on human skin. Pharm Res 16(6):909-15. 1999.
Code: 8

Seay, R. E., Graves, P. J., and Wilkin, M. K. Comment: possible toxicity from propylene glycol in lorazepam infusion. Ann.Pharmacother.; VOL 31 ISS May 1997, P647-648, (REF 11) . 1997.
Code: 5

Senthilmohan, S. T., McEwan, M. J., Wilson, P. F., Milligan, D. B., and Freeman, C. G. Real time analysis of breath volatiles using SIFT-MS in cigarette smoking. Redox Rep 6(3):185-7. 2001.
Code: 8

Shepherd, M. F. and Felt-Gunderson, P. A. Diarrhea associated with lorazepam solution in a tube-fed patient. Nutr.Clin.Pract.; VOL 11 ISS 3 1996, P117-120, (REF 13) . 1996.
Code: 8

Shimoi, K., Okada, H., Furugori, M., Goda, T., Takase, S., Suzuki, M., Hara, Y., Yamamoto, H., and Kinae, N. Intestinal absorption of luteolin and luteolin 7-O-beta-glucoside in rats and humans. FEBS Lett 438(3):220-4. 1998.
Code: 8

Siddiqui, A., Yasmeen, A., Shaharyar, S., and Mariam, T. Neural and endocrine consequences of perinatal exposure to benzodiazepine. J Reprod Fertil Abstr Ser 1998 Jul;(21):30 . 1998.
Code: 8

Singhai, A., Jain, S., and Jain, N. K. Evaluation of piroxicam injection. Indian J.Pharm.Sci.; VOL 59 ISS 6 1997, P306-311, (REF 9) . 1997.
Code: 8

Skaare, A. B., Rolla, G., and Barkvoll, P. The influence of triclosan, zinc or propylene glycol on oral mucosa exposed to sodium lauryl sulphate. Eur J Oral Sci 105(5 Pt 2):527-33. 1997.
Code: 8

Sloan, K. B., Taylor, H. E., and Hamilton, J. C. Alcohol flux and effect on the delivery of theophylline from propylene glycol. Int.J.Pharm.; VOL 156 ISS Oct 10 1997, P17-26, (REF 14) . 1997.
Code: 8

Son, W. Y., Park, S. E., Lee, K. A., Lee, W. S., Ko, J. J., Yoon, T. K., and Cha, K. Y. Effects of 1,2-propanediol and freezing-thawing on the in vitro developmental capacity of human immature oocytes. Fertil Steril 1996 Dec;66(6):995-9 . 1996.
Code: 9

Sonoda, T., Fukunaga, K., Tashiro, S., Ohba, K., and Sugimoto, T. Carbamazepine-induced cardiovascular abnormalities in chick embryos. Teratology 1996 Oct;54(4):14A . 1996.
Code: 8

Squillante, E., Needham, T., Maniar, A., Kislalioglu, S., and Zia, H. Codiffusion of propylene glycol and dimethyl isosorbide in hairless mouse skin. Eur J Pharm Biopharm 46(3):265-71. 1998.
Code: 8

Sun, W. Q., Meng, M., Kumar, G., Geelhaar, L. A., Payne, G. F., Speedie, M. K., and Stacy, J. R. Biological denitration of propylene glycol dinitrate by Bacillus sp. ATCC 51912. Applied Microbiology and Biotechnology; 45 (4).1996.525-529. 1996.
Code: 8

Swan, S. H. and Forest, W. Reproductive risks of glycol ethers and other agents used in semiconductor manufacturing. Occup Hyg 1996;2(1-6):373-85 . 1996.
Code: 8

Taguchi, K., Fukushima, S., Yamaoka, Y., Takeuchi, Y., and Suzuki, M. Enhancement of propylene glycol distribution in the skin by high purity cis-unsaturated fatty acids with different alkyl chain lengths having different double bond position. Biol Pharm Bull 22(4):407-11. 1999.
Code: 8

Takahashi, O. and Oishi, S. Disposition of orally administered bisphenol A in pregnant rats and the placental transfer to fetuses. J Toxicol Sci 1999 Oct;24(4):297 . 1999.
Code: 8

Takahashi, O. and Oishi, S. Disposition of orally administered 2,2-Bis(4-hydroxyphenyl)propane (Bisphenol A) in pregnant rats and the placental transfer to fetuses. Environ Health Perspect 2000 Oct;108(10):931-5 . 2000.
Code: 8

Takeuchi, Y., Miyawaki, K., Kamiyabu, S., Fukushima, S., Yamaoka, Y., Kishimoto, S., Taguchi, K., Masai, H., and Kamata, Y. Use of electroporation to accelerate the skin permeability enhancing action of oleic acid. Biol Pharm Bull 23(7):850-4. 2000.
Code: 8

Tanojo, H., Bouwstra, J. A., Junginger, H. E., and Bodde, H. E. In vitro human skin barrier modulation by fatty acids: skin permeation and thermal analysis studies. Pharm.Res.; VOL 14 ISS Jan 1997, P42-49, (REF 20) . 1997.
Code: 8

Tanojo, H., Junginger, H. E., and Bodde, H. E. In vivo human skin permeability enhancement by oleic acid: transepidermal water loss and Fourier-transform infrared spectroscopy studies. J.Controlled Release; VOL 47 ISS Jul 7 1997, P31-39, (REF 44) . 1997.
Code: 5

Tanojo, H. and Junginger, H. E. Skin permeation enhancement by fatty acids. J.Disper.Sci.Tech.; VOL 20 ISS 1-2 1999, P127-138, (REF 25) . 1999.
Code: 8

Tanojo, H., Boelsma, E., Junginger, H. E., Ponec, M., and Bodde, H. E. In vivo human skin permeability enhancement by oleic acid: laser Doppler velocimetry study. J.Controlled Release; VOL 58 ISS Mar 8 1999, P97-104, (REF 39) . 1999.
Code: 8

Taylor, S. L. and Dormedy, E. S. The Role of Flavoring Substances in Food Allergy and Intolerance. Taylor, S.L.(Ed.).Advances in Food and Nutrition Research, Vol.42.Ix+278p.Academic Press, Inc.: San Diego, California, USA; London, England, Uk.Isbn 0-12-016442-6.; 42 (0).1998.1-44. 1998.
Code: 8

Tenjarla, S. N., Puranajoti, P., Kasina, R., and Mandal, T. Terbutaline transdermal delivery: preformulation studies and limitations of in vitro predictive parameters. J.Pharm.Pharmacol.; VOL 48 ISS Nov 1996, P1138-1142, (REF 10) . 1996.
Code: 8

Tice, R. R., Nylander-French, L. A., and French, J. E. Absence of systemic in vivo genotoxicity after dermal exposure to ethyl acrylate and tripropylene glycol diacrylate in Tg.AC (v-Ha-ras) mice. Environ Mol Mutagen 1997;29(3):240-9 . 1997.
Code: 8

Tobimatsu, T., Kajiura, H., Yunoki, M., Azuma, M., and Toraya, T. Identification and expression of the genes encoding a reactivating factor for adenosylcobalamin-dependent glycerol dehydratase. J Bacteriol 181(13):4110-3. 1999.
Code: 8

Tsang, A. W. and Escalante-Semerena, J. C. cobB function is required for catabolism of propionate in Salmonella typhimurium LT2: evidence for existence of a substitute function for CobB within the 1,2-propanediol utilization (pdu) operon. J Bacteriol 178(23):7016-9. 1996.
Code: 8

Tsang, A. W., Horswill, A. R., and Escalante-Semerena, J. C. Studies of regulation of expression of the propionate (prpBCDE) operon provide insights into how Salmonella typhimurium LT2 integrates its 1,2- propanediol and propionate catabolic pathways. J Bacteriol 180(24):6511-8. 1998.
Code: 8

Tsuchiya, Y. and Kanabus-Kaminska, J. M. Identification and Quantification of Volatile Organic Compounds Using Systematic Single-Ion Chromatograms. Wang, W., J.L.Schnoor and J.Doi (Ed.).Astm Stp, 1261.Volatile Organic Compounds In the Environment; Symposium, Montreal, Quebec, Canada, April 11-13, 1994.291p.Astm (American Society for Testing and Materials): Philadelphia, Pennsylvania, USA.Isbn 0-8031-2048-6.; 0 (1261).1996.127-138. 1996.
Code: 8

Tsutsumi, K., Obata, Y., Takayama, K., Loftsson, T., and Nagai, T. Effect of cod-liver oil extract on the buccal permeation of ergotamine tartrate. Drug Dev Ind Pharm 24(8):757-62. 1998.
Code: 8

Tuo, J., Loft, S., Thomsen, M. S., and Poulsen, H. E. Benzene-induced genotoxicity in mice in vivo detected by the alkaline comet assay: reduction by CYP2E1 inhibition. Mutat Res 368(3-4):213-9. 1996.
Code: 8

Valenta, C. and Wedenig, S. Effects of penetration enhancers on the in-vitro percutaneous absorption of progesterone. J Pharm Pharmacol 49(10):955-9. 1997.
Code: 8

van den Abbeel, E., van der Elst, J., van der Linden, M., and van Steirteghem, A. C. High survival rate of one-cell mouse embryos cooled rapidly to -196 degrees C after exposure to a propylene glycol-dimethylsulfoxide- sucrose solution. Cryobiology 34(1):1-12. 1997.
Code: 8

van den Wollenberg, L., Pellicaan, C. H., and Muller, K. [Intoxication with propylene glycol in two horses.]. Tijdschr Diergeneeskd 125(17):519-23. 2000.
Code: 5

Varon, J. and Marik, P. Etomidate and propylene glycol toxicity. J Emerg Med 16(3):485. 1998.
Code: 9

Veltman, S., Schoenberg, T., and Switzenbaum, M. S. Alcohol and acid formation during the anaerobic decomposition of propylene glycol under methanogenic conditions. Biodegradation 9(2):113-8. 1998.
Code: 8

Verschuuren, H. G. Toxicological Studies with Propylene Glycol n-Butyl Ether. Occupational Hygiene, Vol.2, Nos.1-6, pages 311-318, 6 references, 1996 . 1996.
Code: 8

Villard, P. H., Seree, E. M., Re, J. L., De Meo, M., Barra, Y., Attolini, L., Dumenil, G., Catalin, J., Durand, A., and Lacarelle, B. Effects of tobacco smoke on the gene expression of the Cyp1a, Cyp2b, Cyp2e, and Cyp3a subfamilies in mouse liver and lung: relation to single strand breaks of DNA. Toxicol Appl Pharmacol 1998 Feb;148(2):195-204 . 1998.
Code: 8

Vincent, R., Rieger, B., Subra, I., and Poirot, P. Exposure Assessment to Glycol Ethers by Atmosphere and Biological Monitoring. Occupational Hygiene, Vol.2, Nos.1-6, pages 79-90, 14 references, 1996 . 1996.
Code: 8

Vitkova, Z., Gardavska, K., and Cizmarik, J. Study of local anaesthetics. Part 139. Preformulation study of N-[2-(2- heptyloxyphenylcarbamoyloxy)-ethyl] dimethylammonium chloride. Acta Pharm Hung 66(6):253-7. 1996.
Code: 8

Voziyan, P. A. and Fisher, M. T. Polyols induce ATP-independent folding of GroEL-bound bacterial glutamine synthetase. Arch Biochem Biophys 397(2):293-7. 2002.
Code: 8

W, H. O. Evaluation of Certain Food Additives and Contaminants. Who Technical Report Series; 0 (868).1997.I-Viii, 1-69. 1997.
Code: 8

Wada, H., Liu, C. J., Hirata, T., Bando, T., and Kosaka, S. Effective 30-hour preservation of canine lungs with modified ET-Kyoto solution. Ann Thorac Surg; 61(4):1099-105 1996 . 1996.
Code: 8

Wahlberg, J. E. and Boman, A. Prevention of Contact Dermatitis from Solvents. Elsner, P., Et Al.(Ed.).Current Problems in Dermatology (Basel), Vol.25.Prevention of Contact Dermatitis; International Conference on the Prevention of Contact Dermatitis, Zurich, Switzerland, October 4-7, 1995.X+226p.S.Karger Ag: Basel, Switzerland; New York, New York, USA.Isbn 3-8055-6311-6.; 25 (0).1996.57-66. 1996.
Code: 8

Walter, D., Ailion, M., and Roth, J. Genetic characterization of the pdu operon: use of 1,2-propanediol in Salmonella typhimurium. J Bacteriol 179(4):1013-22. 1997.
Code: 8

Wang, G. and Bai, N. Structure-activity relationships for rat and mouse DL50 of miscellaneous alcohols. Chemosphere; 36 (7).1998.1475-1483. 1998.
Code: 8

Warbrick, E. V., Dearman, R. J., Basketter, D. A., and Kimber, I. Local lymph node assay responses to (chloro)methylisothiazolinone: Influence of vehicle. Annual Congress of the British Toxicology Society, Stoke on Trent, England, Uk, April 18-21, 1999.Yhuman & Experimental Toxicology; 18 (8).1999.526. 1999.
Code: 8

Wester, R. C., Hui, X., Landry, T., and Maibach, H. I. In vivo skin decontamination of methylene bisphenyl isocyanate (MDI): soap and water ineffective compared to polypropylene glycol, polyglycol- based cleanser, and corn oil. Toxicol Sci 48(1):1-4. 1999.
Code: 8

Who. Evaluation of certain food additives and contaminants. 884: Forty-ninth report of the Joint FAO-WHO Expert Committee on Food Additives. Who Technical Report Series; 0 (884).1999.1-96. 1999.
Code: 9

Wieslander, G., Norback, D., and Lindgren, T. Experimental exposure to propylene glycol mist in aviation emergency training: acute ocular and respiratory effects. Occup Environ Med 58(10):649-55. 2001.
Code: 5

Williams, S. P., O'Brien, S., Whitmore, K., Purcell, W. M., Cookson, M. R., Mead, C., Pentreath, V. W., and Atterwill, C. K. An in vitro neurotoxicity testing scheme: Evaluation of cytotoxicity determinations in neural and non-neural cells. In Vitro Toxicology; 9 (1).1996.83-92. 1996.
Code: 8

Wilson, K. C., Reardon, C., and Farber, H. W. Propylene glycol toxicity in a patient receiving intravenous diazepam. N Engl J Med 343(11):815. 2000.
Code: 9

Wolkoff, P. and Nielsen, P. A. A new approach for indoor climate labeling of building materials-emission testing, modeling, and comfort evaluation. Atmospheric Environment; 30 (15).1996.2679-2689. 1996.
Code: 8

Wormser, U., Kohen, R., Moor, E. V., Eldad, A., Gal, R., Nyska, A., and Brodsky, B. Noninvasive procedure for in situ determination of skin surface aspartic proteinase activity in animals; implications for human skin. Arch Dermatol Res 289(12):686-91. 1997.
Code: 8

Woycik, C. L. and Walker, P. C. Correction and comment: possible toxicity from propylene glycol in injectable drug preparations. Ann Pharmacother 31(11):1413. 1997.
Code: 9

Wrzesinski, C. L., Feeney, W. P., Feely, W. F., and Crouch, L. S. Dermal penetration of 4"-(epi-methylamino)-4"-deoxyavermectin B1a benzoate in the rhesus monkey. Food and Chemical Toxicology; 35 (10-11).1997.1085-1089. 1997.
Code: 8

Xu, D., Dhillon, A. S., Abelmann, A., Croft, K., Peters, T. J., and Palmer, T. N. Alcohol-related diols cause acute insulin resistance in vivo. Metabolism 47(10):1180-6. 1998.
Code: 5

Zamir, G., Bloom, A. I., and Reissman, P. Prevention of intestinal adhesions after laparotomy in a rat model--a randomized prospective study. Res Exp Med (Berl) 197(6):349-53. 1998.
Code: 8

Ziv, G., Shem-Tov, M., and Ascher, F. Combined effect of ampicillin, colistin and dexamethasone administered intramuscularly to dairy cows on the clinico-pathological course of E. coli-endotoxin mastitis. Veterinary Research (Paris); 29 (1).1998.89-98. 1998.
Code: 8

Smoking Vapor Electronic Cigarette

Electronic cigarette aerosol and e-liquid

 UK

[Thorpe] Welcometo Beyond the Data.

I'm Dr.

Phoebe Thorpe, and herewith me today is Dr.

Brian King from CDC's Office onSmoking and Health.

Thank you for joining us Brian.

[King] Thanks somuch for having me.

It's a pleasure to be here.

[Thorpe] Our topictoday is E-cigarettes.

Can you tell us why they areconsidered a tobacco product? [King] Yes, so in the UnitedStates we regulate tobacco products through the US Foodand Drug Administration, and the way they describe atobacco product is any product that's made or derivedfrom tobacco.

And we know that the vastmajority of nicotine that's used in tobacco products,including e-cigarettes, is indeed derived from tobacco.

So since these productscontain nicotine, we consider them a tobaccoproduct in the United States.

[Thorpe] And E-cigarettesare little bit different than regular cigarettes.

Can you describe how they work? [King] Yeah, so E-cigarettes isshort for electronic cigarettes, but we know them by alot of different names.

And they can be calledthings like vapor products, hookah pens, vape pens, butthe bottom line is they're all really the same product.

And they work by containinga liquid that's heated which the user then inhales intotheir lungs, and it's important to note that this isn'ttechnically a vapor which is how peoplefrequently refer to.

It's actually an aerosol thatcontains small particles as well as various other ingredientsthat the user inhales, and so there's no combustion.

You're not burning anything, butthere is a heating of the liquid which turns into an aerosolwhich the user inhales.

And they can alsoexhale into the air as other bystandersare around them.

[Thorpe] And the aerosolis not just water vapor.

I mean, that's animportant part to understand because I get asked as aphysician about E-cigarettes, and the thing from the session that I found veryinteresting was the idea that were not reallycertain about the risks that flavorings addto E-cigarettes.

The one that was mentioned wasthe butter flavoring Diacetyl that has been associatedwith bronchiolitis obliterans or what's called popcorn lung,which is a deadly disease.

What more do we know aboutthe risks of E-cigarettes? [King] So our knowledgeabout what's contained in both the E-cigaretteliquid as well as the aerosol hascontinued to evolve over time that these products enteredthe United States marketplace in around 2007.

They didn't really start touptick in use until 2010, 2011.

But, since that time, we reallyincreased the amount of research into what these productscontain.

And what we can say isthat the aerosol admitted by these productsis not harmless.

We do know that the ingredients and the levels aresignificantly less dangerous than conventional cigarettes,but that doesn't mean that they're completelyrisk-free.

And so, some of theingredients we found in the E-cigaretteaerosol are things like ultrafine particulatethat can be inhaled very deep into the lungs, and alsoheavy metals that are found in the filaments of the deviceand are omitted in the aerosol, as well as, things likevolatile organic compounds.

But one of the most commoningredients is nicotine, and we know that nicotineis highly addictive.

But there's alsoevidence indicating that it can harm thedeveloping adolescent brain which really makes itimportant for youth to avoid these devices.

In addition to some of theseother harmful ingredients, we also know the flavorings.

And so, Diacetyl is justone, but there are a variety of different flavoringsthat are used that, although they may be safe toingest in things like food, we don't know what the risks are for inhaling thesedevices into the lungs.

You know, your gut can handlea lot more than your lungs, and that's reallyimportant when we look at the ingredientsin these products.

And finally, it's alsoimportant to remember that people are using a lotof things in E-cigarettes, and that includes otherpsychoactive substances like marijuana andTHC and others.

And so, when we are talkingabout youth in particular, the use of both the nicotinecontaining varieties as well as other varietiesfor other types of drugs are really apublic health concern.

[Thorpe] Okay.

But we have had somerecent good news about the youth meaningmiddle school and high school useof E-cigarettes.

Can you tell me about that? [King] Yes.

It's really a commendablepublic health accomplishment.

We started assessing E-cigaretteuse among youth in this country in 2011, and through 2015,we saw exponential increases in the use of this product.

And 2016 was the first time that we actually saw declineamong youth in this country, and that was really a resultof the coordinated efforts to not only educate thepublic about the harms of youth E-cigarette use but also implementingcommon sense strategies to not only prevent youth accessbut also to protect people from the aerosol andpublic environments and various other campaigns to educate peopleabout these products.

But, on balance, the badnews is that we still have over 2 million youth thatare using E-cigarettes, and they're now the mostcommonly used tobacco products used among US youth.

So we made great progress,but we really need to continue that momentum toreduce all forms of tobacco productuse among youth.

[Thorpe] So it's going down, butnot as lot much as we'd like.

So what's driving the use ofthe E-cigarettes in teens? [King] So there's avariety of factors that we believe are contributingto these increased rates of use among youth thatwe saw through 2015.

One of the most notable is theadvertising for these products.

We know that many of the themesand tactics that have been used to advertise conventionalcigarettes are frequently used for E-cigarettes.

And we also know thatthere's some media of for which conventional cigaretteadvertising is banned that is allowed forE-cigarettes.

Things like television.

And so, there's reallya prominent advertising of these products, and we know that it's reachingkids in particular.

About 18 million US youthreported being exposed to E-cigarette ads in 2014.

Another factor isflavorings, and we know, from the existing science, that flavorings can beparticularly appealing in terms of enticing youth and youngadults to use tobacco products.

And a variety of E-cigarettesare flavored, and we know, from the existing data, thatabout two thirds of youth who use these cigarettes reportusing flavored varieties, and flavors are the mostcommonly cited reason for why youth startedusing these products.

And so, in the end, wereally have a situation where you know the advertisingis bringing the horse to water.

The flavorings aregetting them to drink, and then the nicotine is keepingthem coming back for more.

And so, it's kind of aperfect storm in terms of the youth rates of this use.

But the good news is, we knowwhat works to prevent that.

And if we implement those commonsense public health strategies, we can continue to seethe declines that we saw within the past yearamong our nation's youth.

[Thorpe] And the realconcern is about nicotine and the teenage brain.

Can you just briefly tell mea little bit more about that? [King] Yeah.

So nicotine is found in thevast majority of E-cigarettes that are sold on the U.

S.

marketand, you know, nicotine we use in things like nicotinereplacement therapy among adults.

And it can be, youknow, an effective drug to help people quitconventional cigarette smoking.

But it's important to note thatthose are in very measured doses and weans the individual off of conventional cigarettesover time.

But nicotine is notnecessarily risk-free.

Particularly forvulnerable populations.

We know that nicotineis highly addictive, but there's also a growingbody of scientific evidence that was outlined in a recentSurgeon General's Report noting that nicotine exposure can harmthe developing adolescent brain.

And we know that thebrain continues to develop into young adulthood upthrough 25 or 26, and so, there's really implicationsfor not only youth use of these products butalso young adult use of any nicotine containingproduct.

And another thing to remember with nicotine is it'salso been shown to result in adverse health outcomesamong pregnant women in particularly fetal toxicity.

So there's also implications about pregnant womenusing any form of nicotine containing product,and so, it's really important for them to talk with theirphysician before they use any type of nicotine containingproduct including E-cigarettes.

[Thorpe] So is there a placethat physicians could go to learn a little bitmore about these parts with the E-cigarettesand the nicotine? [King] So there's many resourcesthat have been developed over the past fewyears, particularly as the sciences begun to grow.

And we have, you know,more concrete evidence about what works effectivelyto help warn people about these products and alsoprovide them scientific-based information to makeinformed decisions.

And in 2016, the U.

S.

SurgeonGeneral released a landmark report on E-cigarette useamong youth and young adults.

And as part of therelease of that report, there were severalmaterials including resources and provider cards to helphealth professionals really communicate to both childrenand adults about these products.

And so, in the context of youth, it really enforces theimportance of warning them about the dangersof these products.

Particularly with regardto the nicotine content.

And among adults, it's amore nuanced conversation about knowing that we dohave FDA approved medications to help people quit, and thoseshould really be the first line of defense to help you quit.

And if that doesn't work, youcan consider E-cigarettes, but in consultation withyour healthcare provider.

And right now, based onthe evidence we have, there is no conclusive evidencethat E-cigarettes are effective for long-term cessation, andso, it's really important to use those resources thatwe know are most effective to help you quitand in coordination with your healthcare provider.

[Thorpe] And then foryouth, where if parents or other adults wanted to knowmore about how they could talk to teens and young adults aboutthe risks of E-cigarettes, where would they find someinformation about that? [King] So as part of the releaseof the Surgeon General's Report, there's an excellent interactivewebsite that was coordinated with the release of that report, and it isE-cigarettes.

Surgeongeneral.

Gov.

And it has a varietyof information on both the reportitself as well as a public service announcementas well as informational cards for both parents andclinicians to educate our youth and young adults in particularabout the dangers and risks of using these products.

[Thorpe] That sounds like anexcellent place for our viewers to go and see whatthey can find out.

Thank you very muchfor joining us.

[King] Thank you verymuch for having me.

[Thorpe] And thankyou for joining us.

See you next monthon Beyond the Data.


 

Uk E Liquid Free Delivery UK

E Liquid Uk Supplier UK

E-cigs vs. T-cigs

Electronic cigarettes may be less harmful in the UK than cigarettes but may still be dangerous. Under which circumstances should a person use ecigs? Will they fill your body with plastic?

Electronic cigarettes can contain propylene glycol or vegetable glycerine with nicotine (and in at least two cases polyethylene glycol 400) to form a solution that when heated by an atomizer, produces a visible vapour that provides nicotine to the bloodstream via the lungs when inhaled.

Electronic cigarettes have not been studied enough by scientists in laboratories to form conclusive evidence that their use is either beneficial or harmful to humans. However, some are concerned that unknown side-effects could occur with continuous, consistent use of electronic cigarettes, including cancer.

Behaviour surrounding their use is worrisome because e-cigs are being used habitually by a percentage of non-smokers who otherwise would not use nicotine, they may seem attractive to children, they are not closely regulated, and their use makes it very easy to overdose on nicotine even for experienced smokers.

Ego Electronic Cigarette

UK Electronic Cigarettes and E-Liquid

  (Redirected from E-liquid) Aerosol (vapor) exhaled by an e-cigarette user.

The aerosol of electronic cigarettes is generated when the e-liquid reaches a temperature of roughly 100–250 °C within a chamber.[1] The user inhales the aerosol, commonly called vapor, rather than cigarette smoke.[2] The aerosol provides a flavor and feel similar to tobacco smoking.[3] In physics, a vapor is a substance in the gas phase whereas an aerosol is a suspension of tiny particles of liquid, solid or both within a gas.[2] Vapor from an electronic cigarette simulates tobacco smoke, but the process of burning tobacco does not occur.[3] The aerosol is made-up of liquid sub-micron particles of condensed vapor,[4] which mostly consist of propylene glycol, glycerol, water, flavorings, nicotine, and other chemicals.[5] The various chemicals in the aerosol give rise to many issues concerning the safety of electronic cigarettes that have been much discussed.[2][5][6] After a puff, inhalation of the aerosol travels from the device into the mouth and lungs.[2] A 2014 review found that the particles emitted by e-cigarettes are comparable in size and number to particles in cigarette smoke, with the majority of them in the ultrafine range. The particles are of the ultrafine size which can go deep in the lungs and then into the systemic circulation. A 2014 review said local pulmonary toxicity may occur because metal nanoparticles can deposit in the lungs.[6] Others show that the quantities of metals emitted are minimal and permissible by medicinal standards.[5][7][8]

Various bottles of e-liquid.

After the aerosol is inhaled, it is exhaled.[2] Emissions from electronic cigarettes are not comparable to environmental pollution or cigarette smoke as their nature and chemical composition are completely different.[5] The particles are larger, with the mean size being 600 nm in inhaled aerosol and 300 nm in exhaled vapor.[9] Bystanders are exposed to these particles from exhaled e-cigarette vapor.[6] There is a concern that some of the mainstream vapor exhaled by e-cigarette users can be inhaled by bystanders, particularly indoors, and have significant adverse effects.[10][11][12] Since e-cigarettes involve an aerosolization process, it is suggested that no meaningful amounts of carbon monoxide are emitted.[13] Thus, cardiocirculatory effects caused by carbon monoxide are not likely.[13] E-cigarette use by an expectant parent might lead to inadvertent health risks to offspring.[14] E-cigarettes pose many safety concerns to children.[14] For example, indoor surfaces can accumulate nicotine where e-cigarettes were used, which may be inhaled by children, particularly youngsters, long after they were used.[14]

E-liquid is the mixture used in vapor products such as electronic cigarettes.[15] The main ingredients in the e-liquid usually are propylene glycol, glycerin, nicotine, and flavorings.[16] However, there are e-liquids sold without propylene glycol, nicotine, or flavors.[15][17][18] The liquid typically contains 95% propylene glycol and glycerin.[19] Propylene glycol and glycerine are used to produce the vapor while the flavoring provides the taste and aroma.[20] The flavorings may be natural or artificial.[9] About 8,000 flavors exist as of 2014.[21] There are many e-liquids manufacturers in the USA and worldwide.[22] While there are currently no US Food and Drug Administration (FDA) manufacturing standards for e-liquid, the FDA has proposed regulations that were expected to be finalized in late 2015.[23] Industry standards have been created and published by the American E-liquid Manufacturing Standards Association (AEMSA).[24]

The vapor can contain nicotine and usually contains vegetable glycerin, propylene glycol, flavors and aroma transporters.[8] The nicotine levels in the vapor varies either from puff-to-puff or among products of the same company.[2] A 2015 report commissioned by Public Health England concluded that e-cigarettes "release negligible levels of nicotine into ambient air".[25] E-cigarettes without nicotine are also available.[26] The vapor may also contain tiny amounts of toxicants, carcinogens, and heavy metals.[6][8] Contamination with various chemicals has been identified.[9] E-cigarette makers do not fully disclose information on the chemicals that can be released or synthesized during use.[2] The metals have been found in trace amounts in the vapor, some of them at higher amounts than in cigarette smoke.[5] The peak concentration of nicotine delivered by e-cigarette use is comparable to that produced by conventional cigarette smoking.[27]

An example of a commercial e-liquid and an advanced personal vaporizer.

E-liquid,[28] e-fluid, or e-juice[29] is the mixture used in vapor products including e-cigarettes.[15] E-Liquids come in many variations, including different nicotine strengths and many different flavors.[30] The main ingredients are propylene glycol, glycerine, and flavorings; and most often, nicotine in liquid form.[16] The liquid typically contains 95% propylene glycol and glycerin, and the remaining 5% being flavorings and nicotine.[19] E-liquid can be made with or without nicotine, with >90% of e-liquids containing some level of nicotine.[31] The most regularly used base carrier chemical is propylene glycol with or without glycerin.[6] E-liquid containing glycerin and water made without propylene glycol are also sold.[15] Unless clearly stated, it is uncertain whether the nicotine used in e-liquid is manufactured using a United States Pharmacopeia (USP) grade nicotine, a tobacco plant extract, tobacco dust or a synthetic nicotine.[32] Most e-cigarette liquids contain nicotine, but the level of nicotine varies depending on user-preference and manufacturers.[26] Although some e-juice is nicotine-free, surveys demonstrate that 97% of responders use products that contain nicotine.[17] A 2015 review suggests that 1% of users use liquid without nicotine.[33]

The primary parts that make up an e-cigarette are a mouthpiece, a cartridge (tank), a heating element/atomizer, a microprocessor, a battery, and possibly a LED light on the end.[34] An atomizer comprises a small heating element that vaporizes e-liquid and wicking material that draws liquid onto the coil.[35] When the user pushes a button.[36] or inhales a pressure sensor activates the heating element that atomizes the liquid solution;[37] The e-liquid reaches a temperature of roughly 100–250 °C within a chamber to create an aerosolized vapor.[1] The user inhales the aerosol, commonly called vapor, rather than cigarette smoke.[2] The aerosol provides a flavor and feel similar to tobacco smoking.[3] However, variable voltage devices can raise the temperature where the user adjusts the vapor.[9] The vapor contains similar chemicals to the e-liquid which vary in composition and concentration across and within manufacturers.[2]

E-cigarettes produce particles, in the form of an aerosol.[2][38] In physics, a vapor is a substance in the gas phase whereas an aerosol is a suspension of tiny particles of liquid, solid or both within a gas.[2] The aerosol is made-up of liquid sub-micron particles of condensed vapor,[38] which mostly consist of propylene glycol, glycerol, water, flavorings, nicotine, and other chemicals.[5] This aerosol that is produces resembles cigarette smoke.[2] After a puff, inhalation of the aerosol travels from the device into the mouth and lungs.[2]

A 2014 review found that the particles emitted by e-cigarettes are comparable in size and number to particles in cigarette smoke, with the majority of them in the ultrafine range. The ultrafine particles can go deep in the lungs and then into the systemic circulation. Pulmonary toxicity may occur because metal nanoparticles can deposit in the lungs.[6] The review also found that fine particles can be chemically intricate and not uniform, and what a particle is made of, the exact harmful elements, and the importance of the size of the particle is mostly unknown. They found that because these things are uncertain, it is not clear whether the ultrafine particles in e-cigarette vapor have health effects similar to those produced by traditional cigarettes.[6]

A 2014 WHO report found e-cigarettes release a lower level of particles than traditional cigarettes.[39] Comparable to a traditional cigarette, e-cigarette particles are tiny enough to enter the alveoli, enabling nicotine absorption.[29] E-cigarettes companies assert that the particulates produced by an e-cigarette are too tiny to be deposited in the alveoli.[40] Exactly what comprises the vapor varies in composition and concentration across and within manufacturers.[2] Different devices generate different particle sizes and cause different depositions in the respiratory tract, even from the same nicotine liquid.[41] Reports in the literature have shown respiratory and cardiovascular effects by these smaller size particles, suggesting a possible health concern.[42]

After the aerosol is inhaled, it is exhaled.[2] Emissions from electronic cigarettes are not comparable to environmental pollution or cigarette smoke as their nature and chemical composition are completely different.[5] The particles are larger, with the mean size being 600 nm in inhaled aerosol and 300 nm in exhaled vapor.[9] The exhaled aerosol particle concentration is 5 times lower from an e-cigarette than from a combustible tobacco cigarette.[43] The density of particles in the vapor is lower than in cigarette smoke by a factor of between 6 and 880 times lower.[5]

For particulate matter emissions, e-cigarettes slightly exceeded the WHO guidelines, but emissions were 15 times less than traditional cigarette use.[44] In January 2014, the International Union Against Tuberculosis and Lung Disease stated "Adverse health effects for exposed third parties (second-hand exposure) cannot be excluded because the use of electronic cigarettes leads to emission of fine and ultrafine inhalable liquid particles, nicotine and cancer-causing substances into indoor air."[45] The dense vapor consists of liquid sub-micron droplets.[38][dead link]

Since e-cigarettes have not been widely used long enough for evaluation, the long-term health effects from the second-hand vapor are not known.[6] There is insufficient data to determine the impact on public health from e-cigarettes.[46] The potential harm to bystanders from e-cigarettes is unknown.[47] This is because no long-term data is available.[8]

Since e-cigarettes do not burn (or contain) tobacco, no side-stream smoke or any cigarette smoke is produced.[6] Only what is exhaled by e-cigarettes users enters the surrounding air.[8] Exhaled vapor consists of nicotine and some other particles, primarily consisting of flavors, aroma transporters, glycerin and propylene glycol.[8] Bystanders are exposed to these particles from exhaled e-cigarette vapor.[6] A mixture of harmful substances, particularly nicotine, ultrafine particles, and volatile organic compounds can be exhaled into the air.[48] The liquid particles condenses into a viewable fog.[9] The vapor is in the air for a short time, with a half-life of about 10 seconds; traditional cigarette smoke is in the air 100 times longer.[9] This is because of fast revaporization at room temperature.[9]

There is a concern that some of the mainstream vapor exhaled by e-cigarette users can be inhaled by bystanders, particularly indoors, and have significant adverse effects.[10][12] Since e-cigarettes involve an aerosolization process, it is suggested that no meaningful amounts of carbon monoxide are emitted.[13] Thus, cardiocirculatory effects caused by carbon monoxide are not likely.[13] However, in an experimental study, e-cigarettes increased levels of carcinogenic polycyclic aromatic hydrocarbons in the surrounding air.[13]

E-cigarettes used in indoor environments can put at risk nonsmokers to elevated levels of nicotine and aerosol emissions.[43] Nonsmokers exposed to e-cigarette aerosol produced by a machine and pumped into a room were found to have detectable levels of the nicotine metabolite cotinine in their blood. The same study stated that 80% of nicotine is normally absorbed by the user, so these results may be higher than in actual second hand exposure.[6] In 2015 a report commissioned by Public Health England concluded that e-cigarettes "release negligible levels of nicotine into ambient air with no identified health risks to bystanders".[25]

A 2014 review of limited data concluded this vapor can cause indoor air pollution and is not just water vapor as is frequently stated in the advertising of e-cigarettes.[6] A 2014 practice guideline by NPS MedicineWise states, "Although data on health effects of passive vapour are currently lacking, the risks are argued to be small, but claims that e-cigarettes emit only water vapour are nevertheless incorrect. Serum cotinine levels (a metabolite of nicotine) have been found to be similar in bystanders exposed to either e-cigarette vapour or cigarette smoke."[49][50] The 2015 California Department of Public Health has reported that "Mainstream and second hand e-cigarette aerosol has been found to contain at least ten chemicals that are on California's Proposition 65 list of chemicals known to cause cancer, birth defects, or other reproductive harm."[51] However, it has been demonstrated that e-cigarettes causes nonusers to be exposed to nicotine but not to tobacco-related combustion toxicants.[10]

A no smoking or vaping sign from the US.

A white paper published in 2014 by the American Industrial Hygiene Association concluded e-cigarettes emit airborne contaminants that may be inhaled by the user and those nearby.[42] They urged indoors restrictions similar to smoking bans, until research has shown the aerosol has no risk of harm.[42] A 2014 review indicated that the levels of inhaled contaminants from the e-cigarette vapor are not of significant health concern for human exposures by the standards used in workplaces to ensure safety.[26] The use of e-cigarettes in a smoke-free area could expose non-users to toxins.[52] The effect on bystanders would likely be much less harmful than traditional cigarettes.[8]

2014 WHO report stated passive exposure was as a concern, indicating that current evidence is insufficient to determine whether the levels of exhaled vapor are safe to involuntarily exposed bystanders.[39] The report stated that "it is unknown if the increased exposure to toxicants and particles in exhaled aerosol will lead to an increased risk of disease and death among bystanders."[39] The British Medical Association (BMA) reported in 2013 that there are "concerns that the use of e-cigarettes could threaten the norm of not smoking in public places and workplaces."[53]

As of 2013[update], the only clinical study currently published evaluating the respiratory effects of passive vaping found no adverse effects were detected.[5] A 2014 review found it is safe to infer that their effects on bystanders are minimal in comparison to traditional cigarettes.[5] A E-cigarette vapor has notably fewer toxicants than cigarette smoke and is likely to pose less harm to users or bystanders.[6]

E-cigarette use by a parent might lead to inadvertent health risks to offspring.[14] E-cigarettes pose many safety concerns to children.[14] For example, indoor surfaces can accumulate nicotine where e-cigarettes were used, which may be inhaled by children, particularly youngsters, long after they were used.[14] A policy statement by the American Association for Cancer Research and the American Society of Clinical Oncology has reported that "Third-hand exposure occurs when nicotine and other chemicals from second-hand aerosol deposit on surfaces, exposing people through touch, ingestion, and inhalation".[17] Public health England, looking at the available research said the amount of nicotine deposited was low and that an infant would have to lick 30 square meters to be exposed to 1 mg of nicotine.[25] The statement noted there are no published studies of third hand exposure from e-cigarettes, however initial data suggests that nicotine from e-cigarettes may stick to surfaces and would be hard to remove.[17]

The e-liquid is sold in bottles or pre-filled disposable cartridges, or as a kit for consumers to make their own e-juices.[54] Some vendors of e-liquids, offer options to change the amounts of flavorings or nicotine strengths, and build each bottle customized for the purchaser.[54] E-liquids are made with various tobacco, fruit, and other flavors,[6] as well as variable nicotine concentrations (including nicotine-free versions).[16] The standard notation "mg/ml" is often used on labels to denote nicotine concentration, and is sometimes shortened to "mg".[55] In surveys of regular e-cigarette users, the most popular e-liquids have a nicotine content of 18 mg/ml, and the preferred flavors were largely tobacco, mint and fruit.[8] A cartridge may contain 0 to 20 mg of nicotine.[48] EU regulations cap the concentration of nicotine in e-liquid at a maximum of 20 mg/mL.[29] A refill bottle can contain up to 1 g of nicotine.[48] Refill liquids are often sold in the size range from 15 to 30 mL.[56] One cartridge may typically last as long as one pack of cigarettes.[57] Some liquids without flavoring is also sold.[18] The flavorings may be natural or artificial.[9] There is even certified organic liquid.[58] About 8,000 flavors exist as of 2014.[21] A user does not normally consume a whole cartridge in a single session.[59] Most e-liquids are produced by a few manufacturers in China, the US and Europe.[8] An e-cigarette user will usually obtain 300 to 500 puffs per mL of liquid.[56]

The two most common e-liquid bases are propylene glycol (PG) and vegetable glycerin (VG).[60] Propylene glycol is tasteless and odorless, and therefore it doesn't affect the flavor of the e-liquid. It is known, however, to cause allergic reactions in some users, and in such case it is advised to stop the use immediately. Vegetable glycerin, on the other hand, is a lot thicker in consistency, and it doesn't cause allergic reactions. It also produces significantly more vapor, which has a slight sweet taste.[61][unreliable source?]

E-liquids are manufactured by many producers, both in the US and across the world.[22] First tier manufacturers use lab suits, gloves, hair covers, inside of certified clean rooms with air filtration similar to pharmaceutical-grade production areas.[22]

Standards for e-liquid manufacturing have been created by American E-liquid Manufacturing Standards Association (AEMSA), which is trade association dedicated to creating responsible and sustainable standards for the safe manufacturing of e-liquids used in vapor products.[62] AEMSA has published a comprehensive list standards and best known methods, which are openly available for use by any manufacturer of e-Liquids. The AEMSA standards cover nicotine, ingredients, sanitary manufacturing rooms, safety packaging, age restrictions, and labeling.[24]

There are no current governmental or US Food and Drug Administration (FDA) manufacturing standards for e-liquid. The FDA has sought to regulate e-liquid through use of the Tobacco Control Act, passed into law in 2009. In April 2014, the FDA issued its "Deeming" proposals for public comment, which would cover e-liquids manufacturing. The Final Rule, (in final form) giving the FDA authority to regulate e-liquids was released on May 5th 2016.[63]

Electronic Cigarette Buy

Safety of electronic cigarettes

 UK

E-cigs vs. T-cigs

Electronic cigarettes may be less harmful than cigarettes but may still be dangerous. Under which circumstances should a person use electronic cigarettes? Will they fill your body with plastic?

Electronic cigarettes can contain propylene glycol or vegetable glycerine with nicotine (and in at least two cases polyethylene glycol 400) to form a solution that when heated by an atomizer, produces a visible vapour that provides nicotine to the bloodstream via the lungs when inhaled.

Electronic cigarettes have not been studied enough by scientists in laboratories to form conclusive evidence that their use is either beneficial or harmful to humans. However, some are concerned that unknown side-effects could occur with continuous, consistent use of electronic cigarettes, including cancer.

Behaviour surrounding their use is worrisome because e-cigs are being used habitually by a percentage of non-smokers who otherwise would not use nicotine, they may seem attractive to children, they are not closely regulated, and their use makes it very easy to overdose on nicotine even for experienced smokers.

Additionally, they're being marketed to children.

Do E-cigs Impact Society?

Are electronic cigarettes safe to use in public?

Many countries, states, cities, companies, bars and restaurants, and other organizations are banning the use of electronic cigarettes. There are a variety of reasons for their ban.

In 'Drugs And Society' by Glen R. Hanson, Peter J. Venturelli, Annette E. Fleckenstein, the implications the use of drugs has on society is explored in detail. The findings are quite fascinating.


De-icing your lungs?

Many articles about e-cigarettes will focus on the legality of their use and sale, their addictiveness, and the demographics who uses them. What few articles mention though, is what the ingredients in electronic cigarettes are and why you may not want them in your body.

Propylene glycol is basically plastic. Actually it's an additive for manufacturing plastic. The single largest use of PG is for the production of unsaturated polyester resins. It is also used as a humectant (an additive that keeps something moist), and as a preservative for food and tobacco. Mmm, yummy.

Propylene glycol has similar thermal properties to ethylene glycol in that it can lower the freezing point of water when added to it. As a result, propylene glycol is often used as aircraft de-icing fluid, according to Steve Ritter's article What's That Stuff?" on the C&EN website.

Another fun fact: disclosure of which chemicals are in any given electronic cigarette are often not made available by manufacturers or retailers. The most recent information regarding the health effects on humans of acute exposure to propylene glycol by inhalation is from 2002. Please find this information made available by the EPA at the bottom of this article.

Formaldehyde in Cigarettes; Nicotine could Kill a Child

You are probably not a doctor (although, you might be), and you probably rely on the advice of experts for medical information and health recommendations. Using your best judgement, do you think that electronic cigarettes are safe to use? Would you recommend using an electronic cigarette to your friends and family? How about your kids?

Take a look at this video from reports in France. It says that e-cigarettes contain level of formaldehyde near that of tobacco cigarettes. What? I do not know if that information is true, but if it is, it's not good!

The reports urge people to understand that electronic cigarettes are not healthy. Furthermore, the reports say that some models of e-cigarette do not have protective safety caps even though they have enough nicotine to kill a child. That is a liability. Yikes!


Quick facts


  • The molecular formula for propylene glycol is C3H8O2
  • It is a clear and colorless liquid and is non-corrosive
  • It is unknown whether or not is adversely affects human health
  • It is a main ingredient in electronic cigarettes and windshield washer liquid
  • Using it, you might look cool to some people (but they are pathetic losers)
  • Plastic boogers – your snot turns white and is now made of plastic

Ready for the formula? It's CH3CHOHCH2OH

The molecular formula for propylene glycol is C3H8O2. It is a clear and colourless liquid and is non-corrosive.

C3H8O2 can accumulate in your body from the use of shampoo, deodorant, moisturisers and creams, pain medication and a host of food products. So there's probably already enough in there without the use of e-cigs.

E-cigarettes offer you the opportunity to pay money to suck PG directly into the center of your body.


What Should You Do About It?

At best, e-cigarettes are neutral for your health and at worst they are detrimental to your health. How bad for you are they?

You'll need good luck if you are currently using an electronic cigarette! Because the health effects are largely unknown, using an e-cig is a gamble and you'll need all the luck you can get.

Enjoy!

Propylene Glycol Reference from the EPA

It looks like a few people have looked into it before. It's surprising there's not a lot of available data as to the effects of inhalation on humans. Shocking!

Check out this Propylene Glycol Reference List from the EPA:


Support: [] - Acute Toxicity to Daphnids (Daphnia Magna) under Static Conditions, with Cover Letter Dated 8/28/96 (Sanitized). EPA/OTS; Doc #89960000203S . 1996.
Code: 8

Methoxypropanol, dipropylene glycol methyl ether. S.Hirzel Verlag, P.O.Box 10 10 61, 70009 Stuttgart, Germany, 1997.vii, 142p.Bibl.ref. 1997.
Code: 8

A 2-Year Vapor Inhalation Oncogenicity Study & Evaluation of Hepatic Cellular Proliferation & P450 Enzyme Induction in B6c3f1 Mice W/Cover Letter Dated 06/02/99 (Sanitized). EPA/OTS; Doc #86990000051S . 1999.
Code: 9

2-Year Vapor Inhl Chronic/Oncogenicity Study & Evaluation of Hepatic & Renal Cellular Proliferation, P450 Enzyme Induction & Protein Droplet Nephropathy W/Cover Letter Dated 060299. EPA/OTS; Doc #86990000050 . 1999.
Code: 9

Initial Submission: Letter from Ciba Specialty Chems Inc to Usepa Re Acute Toxicity Studies of Alcopol 0 70pg, Collafix Pp2, & Cfr 5651/Magnafloc 1697, W/Attchmts & Dated 12/23/98. EPA/OTS; Doc #88990000073 . 1999.
Code: 9

Comparative Metabolism and Disposition of Ethylene Glycol Monomethyl Ether and Propylene Glycol Monomethyl Ether in Male Rats with Attachments. EPA/OTS; Doc #86-890001230 . 2000.
Code: 9

Propylene Glycol Monomethyl Ether: Inhalation Teratology Study in Rats and Rabbits. EPA/OTS; Doc #86-890001233 . 2000.
Code: 9

Propylene Glycol Monomethyl Ether: Inhalation Teratology Probe Study in Rats and Rabbits. EPA/OTS; Doc #86-890001232 . 2000.
Code: 9

Evaluation of Propylene Glycol-N-Butyl Ether in an Vitro Chromosomal Aberration Assay Utilizing Chinese Hamster Ovary (Cho) Cells (Final Report) (Sanitized). EPA/OTS; Doc #86-890001243S . 2000.
Code: 9

Evaluation of Propylene Glycol-N-Butyl Ether in the Ames Salmonella/Mammalian-Microsome Bacterial Mutagenicity Assay (Final Report) (Sanitized). EPA/OTS; Doc #86-890001244S . 2000.
Code: 9

Nonlinear Kinetics of Inhaled Propylene Glycol Monomethyl Ether in Fischer 344 Rats Following Single and Repeated Exposures (Final Report) with Attachments. EPA/OTS; Doc #86-890001164 . 2000.
Code: 9

Analysis of Dowanol Cx, a Mixture of Dipropylene Glycol Methyl Ether & Propylene Glycol Isobutyl Ether in the Aquatic Environment (Final Report) (Sanitized). EPA/OTS; Doc #86-890001114S . 2000.
Code: 8

Evaluation of the Acute Dermal Toxicity of Dowanol-Pnb in Rat with Attachments (Sanitized). EPA/OTS; Doc #86-890001250S . 2000.
Code: 9

Evaluation of the Acute Oral Toxicity of Dowanol-Pnb in the Rat (Final Report) (Sanitized). EPA/OTS; Doc #86-890001246S . 2000.
Code: 9

Results of Range Finding Toxicological Test on Three Samples of 4-Tert Octyl Phenol. EPA/OTS; Doc #40-5462011 . 2000.
Code: 8

Blood Pharmacokinetics of Propylene Glycol Methyl Ether and Propylene Glycol Methyl Ether Acetate in Male F-344 Rats after Dermal Application, with Cover Letter Dated 2/10/2000. EPA/OTS; Doc #FYI-OTS-0600-1385 . 2000.
Code: 9

Propylene Glycol Monomethyl Ether: A 13-Week Inhalation Toxicity Study in Rats and Rabbits. EPA/OTS; Doc #86-890001229 . 2000.
Code: 9

Warning for oral solution. AIDS Patient Care STDS 14(9):519-20. 2000.
Code: 8

Odor Evaluation Study on Dowtherm 209 Coolant (Dowanol Pm; Monomethyl Ether of Propylene Glycol) in Humans. EPA/OTS; Doc #86-890001220 . 2000.
Code: 8

Assessment of the Oral Toxicity, Including the Haemolytic Activity of Dowanol-Pnb in the Rat: 14-Day Study with Attachments. EPA/OTS; Doc #86-890001253 . 2000.
Code: 9

Chronic Skin Absorption of Propylene Glycol Methyl Ether (33b) and Dipropylene Glycol Methyl Ether (50b) in Rabbits. EPA/OTS; Doc #86-890001219 . 2000.
Code: 9

Propylene Glycol-N-Butyl Ether: An Acute Vapor Inhalation Study in Fischer 344 Rats (Final Report) with Attachments (Sanitized). EPA/OTS; Doc #86-890001245S . 2000.
Code: 9

Propylene Glycol Monomethyl Ether (Pgme): 21-Day Dermal Study in New Zealand White Rabbits. EPA/OTS; Doc #86-890001162 . 2000.
Code: 9

Propylene Glycol Monomethyl Ether: 2-Week Vapor Inhalation Study in Rats and Mice (Sanitized). EPA/OTS; Doc #86-890001235S . 2000.
Code: 9

Propylene Glycol-N-Butyl Ether: Two-Week Vapor Inhalation Study with Fischer 344 Rats (Final Report) (Sanitized). EPA/OTS; Doc #86-890001260S . 2000.
Code: 9

Subchronic (13-Wk) Dermal Toxicity Study with Propylene Glycol-N-Butyl Ether in Rats (Final Report). EPA/OTS; Doc #86-890001257 . 2000.
Code: 9

Alfons, K. and Engstrom, S. Drug compatibility with the sponge phases formed in monoolein, water, and propylene glycol or poly(ethylene glycol). J Pharm Sci 87(12):1527-30. 1998.
Code: 8

Altaras, N. E. and Cameron, D. C. Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. Appl Environ Microbiol 65(3):1180-5. 1999.
Code: 8

Altaras, N. E. and Cameron, D. C. Enhanced production of (R)-1,2-propanediol by metabolically engineered Escherichia coli. Biotechnol Prog 16(6):940-6. 2000.
Code: 8

Altaras, N. E., Etzel, M. R., and Cameron, D. C. Conversion of sugars to 1,2-propanediol by Thermoanaerobacterium thermosaccharolyticum HG-8. Biotechnol Prog 17(1):52-6. 2001.
Code: 8

Andrews, A. H. and Wilkinson, J. Recombinant bovine somatotropin and propylene glycol following glucose injection in treating pregnancy toxaemia. Large Animal Practice; 19 (6).1998.31-33. 1998.
Code: 8

Anon. BIBRA Toxicity Profile of propylene glycol. Govt Reports Announcements & Index (GRA&I), Issue 19, 1996 . 1996.
Code: 7

Anon. Toxicology and Carcinogenesis Studies of 1-Chloro-2-Propanol (Technical Grade) (CAS No. 127-00-4) in F344 Rats and B6C3F1 Mice (Drinking Water Studies). Govt Reports Announcements & Index (GRA&I), Issue 06, 1999 . 1998.
Code: 8

Anonymous. Joint Assessment of Commodity Chemicals No. 33, 1,1-Dichloro-2,2,2-trifluoroethane (HCFC-123) CAS No. 306-83-2. European Centre for Ecotoxicology and Toxicology of Chemicals, Brussels, 55 pages, 92 references, 1996 . 1996.
Code: 8

Anonymous. Propylenglykol (Aug 1995). TA:Beratergremium fuer umweltrelevante Altstoffe (BUA) PG:25 p YR:1996 IP: VI:166 . 1996.
Code: 7

Anonymous. Dipropylene glycol (December 1993). TA:Beratergremium fuer umweltrelevante Altstoffe (BUA) PG:70 p YR:1996 IP: VI:162 . 1996.
Code: 8

Anonymous. Reproductive toxicology. Propylene glycol. Environ Health Perspect 1997 Feb;105 Suppl 1:231-2 . 1997.
Code: 9

Anonymous. Reproductive toxicology. Propylene glycol monomethyl ether. Environ Health Perspect 1997 Feb;105 Suppl 1:233-4 . 1997.
Code: 8

Anonymous. Toxicological profile for Ethylene Glycol and Propylene Glycol. TA:Agency for Toxic Substances and Disease Registry U.S.Public Health Service PG:249 p YR:1997 IP: VI. 1997.
Code: 7

Anonymous. Reproductive toxicology. 2,2-bis(bromomethyl)-1,3-propanediol. Environ Health Perspect 1997 Feb;105 Suppl 1:271-2 . 1997.
Code: 8

Anonymous. Final report on the safety assessment of Yarrow (achillea millefolium) extract. TA:Int J Toxicol PG:79-84 YR:2001 IP:Suppl 2 VI:20 . 2001.
Code: 8

Anonymous. Final report on the safety assessment of Calendula officinalis extract and calendula officinalis. TA:Int J Toxicol PG:13-20 YR:2001 IP:Suppl 2 VI:20 . 2001.
Code: 8

Anonymous. Final report on the safety assessment of Arnica montana extract and arnica montana. TA:Int J Toxicol PG:1-11 YR:2001 IP:Suppl.2 VI:20 . 2001.
Code: 9

Anonymous. Final report on the safety assessment of Hypericum perforatum extract and hypericum perforatum oil. TA:Int J Toxicol PG:31-9 YR:2001 IP:Suppl 2 VI:20 . 2001.
Code: 8

Aoshima, H. Effects of alcohols and food additives on glutamate receptors expressed in Xenopus oocytes: Specificity in the inhibition of the receptors. Bioscience Biotechnology and Biochemistry; 60 (3).1996.434-438. 1996.
Code: 8

Aouizerate, P., Dume, L., and Astier, A. Ethylene glycol poisoning: Presence of propylene glycol traces, and research of analytic interference due to propylene glycol, in the colorimetric determination of glycolic acid. Journal De Pharmacie Clinique; 15 (Spec.Issue).1996.40-42. 1996.
Code: 8

Appleton, R. E. The new antiepileptic drugs [published erratum appears in Arch Dis Child 1997 Jan;76(1):81]. Arch Dis Child 1996 Sep;75(3):256-62 . 1996.
Code: 8

Araki, Y., Andoh, A., Fujiyama, Y., Takizawa, J., Takizawa, W., and Bamba, T. Short-term oral administration of a product derived from a probiotic, Clostridium butyricum induced no pathological effects in rats. Int J Mol Med 9(2):173-7. 2002.
Code: 8

Arbour, R. B. Propylene glycol toxicity related to high-dose lorazepam infusion: case report and discussion. Am J Crit Care 8(1):499-506. 1999.
Code: 9

Arellano, A., Santoyo, S., Martn, C., and Ygartua, P. Surfactant effects on the in vitro percutaneous absorption of diclofenac sodium. Eur J Drug Metab Pharmacokinet 23(2):307-12. 1998.
Code: 8

Arellano, A., Santoyo, S., Martin, C., and Ygartua, P. Influence of propylene glycol and isopropyl myristate on the in vitro percutaneous penetration of diclofenac sodium from carbopol gels. Eur J Pharm Sci 7(2):129-35. 1999.
Code: 8

Baker, R. C. and Kramer, R. E. Cytotoxicity of short-chain alcohols. Cho, A.K.(Ed.).Annual Review of Pharmacology and Toxicology, Vol.39.Vii+470p.Annual Reviews Inc.: Palo Alto, California, USA.Isbn 0-8243-0439-X; 39 (0).1999.127-150. 1999.
Code: 8

Barber, J. T., Thomas, D. A., Ensley, H. E., and Yatsu, L. Y. Duckweed Diols and Death. Plant Biology '97: 1997 Annual Meetings of the American Society of Plant Physiologists and the Canadian Society of Plant Physiologists, Japanese Society of Plant Physiologists and the Australian Society of Plant Physiologists, Vancouver, British Columbia, Canada, August 2-6, 1997.Plant Physiology (Rockville); 114 (3 Suppl.).1997.124. 1997.
Code: 8

Barratt, M. D. QSARS for the eye irritation potential of neutral organic chemicals. Toxicology in Vitro; 11 (1-2).1997.1-8. 1997.
Code: 8

Basketter, D. A., Chamberlain, M., Griffiths, H. A., Rowson, M., Whittle, E., and York, M. The classification of skin irritants by human patch test. Food and Chemical Toxicology; 35 (8).1997.845-852. 1997.
Code: 8

Basketter, D. A., Gerberick, G. F., and Kimber, I. Strategies for identifying false positive responses in predictive skin sensitization tests. Food and Chemical Toxicology; 36 (4).1998.327-333. 1998.
Code: 8

Bausmith, D. S. and Neufeld, R. D. Soil biodegradation of propylene glycol based aircraft deicing fluids. Water Environment Research; 71 (4).1999.459-464. 1999.
Code: 8

Bennett, G. N. and San, K. Y. Microbial formation, biotechnological production and applications of 1,2-propanediol. Appl Microbiol Biotechnol 55(1):1-9. 2001.
Code: 8

Bjerre, C., Bjork, E., and Camber, O. Bioavailability of the sedative propiomazine after nasal administration in rats. Int.J.Pharm.; VOL 144 ISS Nov 29 1996, P217-224, (REF 22) . 1996.
Code: 8

Blake, D. A., Whikehart, D. R., Yu, H., Vogel, T., and Roberts, D. D. Common cryopreservation media deplete corneal endothelial cell plasma membrane Na+,K+ ATPase activity. Curr Eye Res 15(3):263-71. 1996.
Code: 8

Bobik, T. A., Xu, Y., Jeter, R. M., Otto, K. E., and Roth, J. R. Propanediol utilization genes (pdu) of Salmonella typhimurium: three genes for the propanediol dehydratase. J Bacteriol 179(21):6633-9. 1997.
Code: 8

Bobik, T. A., Havemann, G. D., Busch, R. J., Williams, D. S., and Aldrich, H. C. The propanediol utilization (pdu) operon of Salmonella enterica serovar Typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme B(12)-dependent 1, 2-propanediol degradation. J Bacteriol 181(19):5967-75. 1999.
Code: 8

Bolon, B., Bucci, T. J., Warbritton, A. R., Chen, J. J., Mattison, D. R., and Heindel, J. J. Differential follicle counts as a screen for chemically induced ovarian toxicity in mice: Results from continuous breeding bioassays. Fundamental and Applied Toxicology; 39 (1).1997.1-10. 1997.
Code: 8

Boman, A. and Maibach, H. Influence of Evaporation and Repeated Exposure on the Percutaneous Absorption of Organic Solvents. Elsner, P., Et Al.(Ed.).Current Problems in Dermatology (Basel), Vol.25.Prevention of Contact Dermatitis; International Conference on the Prevention of Contact Dermatitis, Zurich, Switzerland, October 4-7, 1995.X+226p.S.Karger Ag: Basel, Switzerland; New York, New York, USA.Isbn 3-8055-6311-6.; 25 (0).1996.57-66. 1996.
Code: 8

Brayden, D., Creed, E., O'Connell, A., Leipold, H., Agarwal, R., and Leone-Bay, A. Heparin absorption across the intestine: effects of sodium N-[8-(2- hydroxybenzoyl)amino]caprylate in rat in situ intestinal instillations and in Caco-2 monolayers. Pharm Res 14(12):1772-9. 1997.
Code: 8

Bremmer, D. R., Trower, S. L., Bertics, S. J., Besong, S. A., Bernabucci, U., and Grummer, R. R. Etiology of fatty liver in dairy cattle: effects of nutritional and hormonal status on hepatic microsomal triglyceride transfer protein. J Dairy Sci 83(10):2239-51. 2000.
Code: 5

Breslin, W. J., Cieszlak, F. S., Zablotny, C. L., Corley, R. A., Verschuuren, H. G., and Yano, B. L. Evaluation of the developmental toxicity of inhaled dipropylene glycol monomethyl ether (DPGME) in rabbits and rats. Occup Hyg 1996;2:161-70 . 1996.
Code: 8

Bruyas, J. F., Martins-Ferreira, C., Fieni, F., and Tainturier, D. The effect of propanediol on the morphology of fresh and frozen equine embryos. Equine Vet J Suppl (25):80-4. 1997.
Code: 8

Burkhart, J., Piacitelli, C., Schwegler-Berry, D., and Jones, W. Environmental study of nylon flocking process. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH PART A; 57 (1).1999.1-23.AB - BIOSIS COPYRIGHT: BIOL ABS.Environmental measurements for a variety of gas, particulate, and microbiological agents have been made in order to characterize exposures associated with the nylon flocking process.Of all agents measured, particulate is the predominant exposure.Levels of total particulate ranged from 0.1 to 240 mg/m3 ( x = 11.4 mg/m3).Average respirable particulate was 2.2 mg/m3, ranging from 0.5 to 39.9 mg/m3.Highest levels of particulates were found in the flocking room, and direct reading dust measuremen veral of which were linked directly to the process.Of special interest were elongated respirable particles, which by microscopic analysis, complemented with melting-point determination, were found to be shreds of nylon. 1999.
Code: 8

Cameron, D. C., Altaras, N. E., Hoffman, M. L., and Shaw, A. J. Metabolic engineering of propanediol pathways. Biotechnol Prog 14(1):116-25. 1998.
Code: 8

Carney, E. W., Crissman, J. W., Liberacki, A. B., Clements, C. M., and Breslin, W. J. Assessment of adult and neonatal reproductive parameters in Sprague-Dawley rats exposed to propylene glycol monomethyl ether vapors for two generations. Toxicol Sci 1999 Aug;50(2):249-58 . 1999.
Code: 8

Carney, E. W. and Johnson, K. A. Comparative developmental toxicity of the glycol ether metabolites, methoxyacetic acid and methoxypropionic acid. Teratology 2000 Jun;61(6):454 . 2000.
Code: 8

Chapin, R. E., Sloane, R. A., and Haseman, J. K. The relationships among reproductive endpoints in Swiss mice, using the reproductive assessment by Continuous Breeding database. Fundam Appl Toxicol 1997 Aug;38(2):129-42 . 1997.
Code: 8

Chapin, R. E. and Sloane, R. A. Reproductive assessment by continuous breeding: evolving study design and summaries of ninety studies. Environ Health Perspect 1997 Feb;105 Suppl 1:199-205 . 1997.
Code: 8

Chicu, S. A. and Berking, S. Interference with metamorphosis induction in the marine cnidaria Hydractinia echinata (hydrozoa): A structure-activity relationship analysis of lower alcohols, aliphatic and aromatic hydrocarbons, thiophenes, tributyl tin and crude oil. Chemosphere; 34 (8).1997.1851-1866. 1997.
Code: 8

Chou C-H, S. J., Holler, J., and De Rosa, C. T. Minimal risk levels (MRLs) for hazardous substances. Journal of Clean Technology Environmental Toxicology and Occupational Medicine; 7 (1).1998.1-24. 1998.
Code: 8

Christensen, J. O., Grummer, R. R., Rasmussen, F. E., and Bertics, S. J. Effect of method of delivery of propylene glycol on plasma metabolites of feed-restricted cattle. J Dairy Sci 80(3):563-8. 1997.
Code: 8

Cicolella, A. [Evaluation of risks of glycol ethers for the reproductive health]. Sante Publique 1997 Jun;9(2):157-83 . 1997.
Code: 8

Colin, T., Bories, A., and Moulin, G. Inhibition of Clostridium butyricum by 1,3-propanediol and diols during glycerol fermentation. Appl Microbiol Biotechnol 54(2):201-5. 2000.
Code: 8

Cook, G., Papich, M. G., Roberts, M. C., and Bowman, K. F. Pharmacokinetics of cisapride in horses after intravenous and rectal administration. Am J Vet Res 58(12):1427-30. 1997.
Code: 8

Corley, R. A., Crissman, J. W., Redmond, J. M., McGuirk, R. J., Cieszlak, F. S., and Stott, W. T. Adaptive Metabolic and Pathologic Changes following Chronic Inhalation of Propylene Glycol Monomethyl Ether in Rats and Mice. Occupational Hygiene, Vol.2, Nos.1-6, pages 319-328, 24 references, 1996 AB - The temporal relationships between propylene-glycol-monomethyl-ether (107982) (PGME) induced metabolic and morphological changes in rats and mice which have been chronically exposed to up to 3,000 parts per million (ppm) of PGME vapors were characterized.B6C3F1-mice and F344-rats were exposed to 300, 1,000, or 3,000ppm for 6 hours a day, 5 days a week, for up to 2 years.Results indicated that there is potential for adaptive biochemical and cellular changes in response to chemical exposure to modify the toxicity of PGME in rats and mice.Nearly all inhaled PGME was absorbed, resulting in high systemic levels of PGME.These levels may result in central nervous system depression and the clinically observable sedation of exposed animals.A disruption in male rats was noted in the processing of alpha2micro-globulin resulting in mild degenerative effects in renal tubule epithelial cells.The pronounced sedation of rats and mice exposed to 3,000ppm resolved by the second week of exposure.The induction of O-dealkylase activity in these animals suggests an increase in the potential of metabolized PGME via its major metabolic route to propylene-glycol and then to carbon-dioxide.Exposed animals may also have effectively enhanced PGME metabolism by increasing the number of hepatocytes in response to PGME exposure resulting in the increase in liver weights.Clearly defined, treatment related renal effects were only observed in male rats.The authors conclude that high concentrations of PGME cause an adaptive hepatic response in both sexes of rats and mice that is partially reversed in rats. 1996.
Code: 8

Cornwell, P. A., Barry, B. W., Bouwstra, J. A., and Gooris, G. S. Modes of action of terpene penetration enhancers in human skin; differential scanning calorimetry, small-angle x-ray diffraction and enhancer uptake studies. Int.J.Pharm.; VOL 127 ISS Jan 15 1996, P9-26, (REF 50) . 1996.
Code: 8

Corsi, S. R., Booth, N. L., and Hall, D. W. Aircraft and runway deicers at General Mitchell International Airport, Milwaukee, Wisconsin, USA. 1. Biochemical oxygen demand and dissolved oxygen in receiving streams. Environ Toxicol Chem 20(7):1474-82. 2001.
Code: 8

Corsi, S. R., Hall, D. W., and Geis, S. W. Aircraft and runway deicers at General Mitchell International Airport, Milwaukee, Wisconsin, USA. 2. Toxicity of aircraft and runway deicers. Environ Toxicol Chem 20(7):1483-90. 2001.
Code: 8

Daniel, R., Bobik, T. A., and Gottschalk, G. Biochemistry of coenzyme B12-dependent glycerol and diol dehydratases and organization of the encoding genes. FEMS Microbiol Rev 22(5):553-66. 1998.
Code: 8

Davison, S., Benson, C. E., Ziegler, A. F., and Eckroade, R. J. Evaluation of disinfectants with the addition of antifreezing compounds against nonpathogenic H7N2 avian influenza virus. Avian Dis 43(3):533-7. 1999.
Code: 8

De Bortoli, M., Ghezzi, E., Knoppel, H., and Vissers, H. A new test chamber to measure material emissions under controlled air velocity. Environmental Science & Technology; 33 (10).1999.1760-1765. 1999.
Code: 8

Debellefontaine, H., Chakchouk, M., Foussard, J. N., Tissot, D., and Striolo, P. Treatment of organic aqueous wastes: Wet air oxidation and Wet Peroxide Oxidation. Environmental Pollution; 92 (2).1996.155-164. 1996.
Code: 8

Dib, R., Chobert, J. M., Dalgalarrondo, M., and Haertle, T. Secondary structure changes and peptic hydrolysis of beta-lactoglobulin induced by diols. Biopolymers 39(1):23-30. 1996.
Code: 8

Ding, P., Xu, H., Wei, G., and Zheng, J. Microdialysis sampling coupled to HPLC for transdermal delivery study of ondansetron hydrochloride in rats. Biomed Chromatogr 14(3):141-3. 2000.
Code: 8

Doenicke, A., Roizen, M. F., Hoernecke, R., Mayer, M., Ostwald, P., and Foss, J. Haemolysis after etomidate: comparison of propylene glycol and lipid formulations. Br J Anaesth 79(3):386-8. 1997.
Code: 8

Dorr, R. T., Bellamy, W., Liddil, J. D., Baker, A., and Bair, K. W. Correlation of cytotoxicity and protein-associated DNA strand breaks for 2-(arylmethylamino)-1,3-propanediols. Anticancer Drug Des 1998 Oct;13(7):825-35 . 1998.
Code: 8

el-Fiky, M. A. Hyperglycemic effect of a neurotoxic fraction (F3) from Naja haje venom: role of hypothalamo-pituitary adrenal axis (HPA). J Nat Toxins 8(2):203-12. 1999.
Code: 8

Elliott, R. C., Jones, J. R., McElvenny, D. M., Pennington, M. J., Northage, C., Clegg, T. A., Clarke, S. D., Hodgson, J. T., and Osman, J. Spontaneous abortion in the British semiconductor industry: An HSE investigation. Health and Safety Executive [see comments]. Am J Ind Med 1999 Nov;36(5):557-72 . 1999.
Code: 8

Emiliani, S., Van den Bergh, M., Vannin, A. S., Biramane, J., and Englert, Y. Comparison of ethylene glycol, 1,2-propanediol and glycerol for cryopreservation of slow-cooled mouse zygotes, 4-cell embryos and blastocysts. Hum Reprod 15(4):905-10. 2000.
Code: 8

Farshid, A. A., Rajan, A., and Nair, M. K. Ultrastructural pathology of the lymphoid organs in Japanese quail embryos in experimental ochratoxicosis. Indian Veterinary Journal; 73 (12).1996.1225-1230. 1996.
Code: 8

Farshid, A. A. and Rajan, R. Assessment of the cell-mediated immune response of Japanese quails in experimental ochratoxicosis. Indian Veterinary Journal; 73 (11).1996.1117-1121. 1996.
Code: 8

Farshid, A. A., Rajan, A., and Nair, M. K. Ultrastructural pathology of the lymphoid organs in Japanese quail embryos in experimental ochratoxicosis. Journal of Veterinary and Animal Sciences; 27 (1).1998.21-26. 1998.
Code: 8

Gabiga, H., Cal, K., and Janicki, S. Effect of penetration enhancers on isosorbide dinitrate penetration through rat skin from a transdermal therapeutic system. Int J Pharm 199(1):1-6. 2000.
Code: 8

Gallacher, G. and Maibach, H. I. Is atopic dermatitis a predisposing factor for experimental acute irritant contact dermatitis? Contact Dermatitis; 38 (1).1998.1-4. 1998.
Code: 8

Gao, D. Y., Neff, K., Xiao, H. Y., Matsubayashi, H., Cui, X. D., Bonderman, P., Bonderman, D., Harvey, K., McIntyre, J. A., Critser, J., Miraglia, C. C., and Reid, T. Development of optimal techniques for cryopreservation of human platelets. I. Platelet activation during cold storage (at 22 and 8 degrees C) and cryopreservation. Cryobiology 38(3):225-35. 1999.
Code: 8

Garnier, R. [Acute poisoning with industrial products]. Rev Prat 50(4):377-84. 2000.
Code: 8

Garzon-De la Mora, P., Garcia-Lopez, P. M., Garcia-Estrada, J., Navarro-Ruiz, A., Villanueva-Michel, T., Villarreal-de Puga, L. M., and Casillass-Ochoa, J. Casimiroa edulis seed extracts show anticonvulsive properties in rats. J Ethnopharmacol 68(1-3):275-82. 1999.
Code: 8

George, J. and Murray, E. Toxicological Profile for Ethylene Glycol and Propylene Glycol. Govt Reports Announcements & Index (GRA&I), Issue 05, 1998 . 1997.
Code: 7

Germann, P. G., Ockert, D., and Heinrichs, M. Pathology of the oropharyngeal cavity in six strains of rats: Predisposition of Fischer 344 rats for inflammatory and degenerative changes. Toxicologic Pathology; 26 (2).1998.283-289. 1998.
Code: 8

Gilmore, J. A., Liu, J., Gao, D. Y., and Critser, J. K. Determination of optimal cryoprotectants and procedures for their addition and removal from human spermatozoa. Hum Reprod 1997 Jan;12(1):112-8 . 1997.
Code: 8

Glover, M. L. and Reed, M. D. Propylene glycol: safe diluent that continues to cause harm. Pharmacotherapy; VOL 16 ISS 4 1996, P690-693, (REF 18) . 1996.
Code: 5

Godwin, D. A. and Michniak, B. B. Influence of drug lipophilicity on terpenes as transdermal penetration enhancers. Drug Dev Ind Pharm 25(8):905-15. 1999.
Code: 8

Gotvajn, A. Z. and Zagorc-Koncan, J. Laboratory simulation of biodegradation of chemicals in surface waters: closed bottle and respirometric test. Chemosphere 38(6):1339-46. 1999.
Code: 8

Groning, R. and Kuhland, U. Pulsed release of nitroglycerin from transdermal drug delivery systems. Int J Pharm 193(1):57-61. 1999.
Code: 8

group, Bibra working. Propylene Glycol. TA:Toxicity profile.BIBRA Toxicology International PG:16 p YR:1996 IP: VI. 1996.
Code: 7

group, N. T. P. working. Toxicology and carcinogenesis studies of 1-Chloro-2-Propanol (Technical grade) in F344/N rats and B6C3F1 mice (drinking water studies). TA:National Toxicology Program Technical Report Series PG:264 p YR:1998 IP: VI:477 . 1998.
Code: 8

Guerriero, F. J., Seaman, C. W., Sprague, G. L., Sutton, T. J., and Toseland, C. D. Developmental toxicity in rats treated orally with 2-(2-iodoethyl)-1,3-propanediol diacetate. Toxicologist 2000 Mar;54(1):291-2 . 2000.
Code: 8

Guin, J. D. Contact Dermatitis and Other Contact Reactions. Lieberman, P.And J.A.Anderson (Ed.).Current Clinical Practice: Allergic Diseases: Diagnosis and Treatment.X+402p.Humana Press Inc.: Totowa, New Jersey, USA.Isbn 0-89603-367-8.; 0 (0).1997.233-254. 1997.
Code: 8

Gupta, A. K., Einarson, T. R., Summerbell, R. C., and Shear, N. H. Overview of topical antifungal therapy in dermatomycoses: North American perspective. Drugs; VOL 55 ISS May 1998, P645-674, (REF 447) . 1998.
Code: 8

Gupta, G., Dawn, G., and Forsyth, A. The trend of allergic contact dermatitis in the elderly population over a 15-year period. Contact Dermatitis; 41 (1).1999.48-50. 1999.
Code: 8

Hall, S. and Godwin-Saad, E. Effects of Pollutants on Freshwater Organisms. Water Environment Research; 68 (4).1996.776-784. 1996.
Code: 8

Hattori, T. and Maehashi, H. Increase in Calcium Influx by Propylene Glycol at Mouse Motor Nerve Terminals. In Vitro Toxicology.A Journal of Molecular and Cellular Toxicology, Vol.9, No.4, pages 373-375, 10 references, 1996 . 1996.
Code: 5

Hattori, T. and Maehashi, H. Facilitation of calcium influx by propylene glycol through the voltage- dependent calcium channels in PC12 cells. Res Commun Mol Pathol Pharmacol 105(3):179-84. 1999.
Code: 5

Hattori, T. and Maehashi, H. Rise in intracellular calcium concentration by propylene glycol in PC12 cells. Int J Neurosci 99(1-4):151-7. 1999.
Code: 5

Hattori, T., Maehashi, H., Miyazawa, T., and Naito, M. Enhancement of dopamine release by propylene glycol in PC12 cells. Res Commun Mol Pathol Pharmacol 107(3-4):323-9. 2000.
Code: 5

Havemann, G. D., Sampson, E. M., and Bobik, T. A. PduA is a shell protein of polyhedral organelles involved in coenzyme B(12)-dependent degradation of 1,2-propanediol in Salmonella enterica serovar typhimurium LT2. J Bacteriol 184(5):1253-61. 2002.
Code: 8

Heylings, J. R., Clowes, H. M., Cumberbatch, M., Dearman, R. J., Fielding, I., Hilton, J., and Kimber, I. Sensitization to 2,4-dinitrochlorobenzene: influence of vehicle on absorption and lymph node activation. Toxicology 109(1):57-65. 1996.
Code: 8

Ho, H. O., Chen, L. C., Lin, H. M., and Sheu, M. T. Penetration enhancement by menthol combined with a solubilization effect in a mixed solvent system. J Control Release 51(2-3):301-11. 1998.
Code: 8

Hostynek, J. J. and Magee, P. S. Fragrance allergens: Classification and ranking by QSAR. Toxicology in Vitro; 11 (4).1997.377-384. 1997.
Code: 8

Huang, K., Rudolph, F. B., and Bennett, G. N. Characterization of methylglyoxal synthase from Clostridium acetobutylicum ATCC 824 and its use in the formation of 1, 2- propanediol. Appl Environ Microbiol 65(7):3244-7. 1999.
Code: 8

Imamura, S., Nozawa, I., Imamura, M., and Murakami, Y. Pathogenesis of experimental aural cholesteatoma in the chinchilla. ORL J Otorhinolaryngol Relat Spec 61(2):84-91. 1999.
Code: 5

Inoue, K., Nakazawa, K., Fujimori, K., Ohno, Y., Takanaka, A., Itagaki, H., Kato, S., Kobayashi, T., and Kuroiwa, Y. Evaluation of stinging-inducing chemicals using cultured neuronal cells: An electrophysiological approach. Toxicology in Vitro; 10 (4).1996.455-462. 1996.
Code: 8

Ishidate, M. Jr, Miura, K. F., and Sofuni, T. Chromosome aberration assays in genetic toxicology testing in vitro. Mutation Research; 404 (1-2).1998.167-172. 1998.
Code: 8

Ishiwata, H., Nishijima, M., Fukasawa, Y., Ito, Y., and Yamada, T. Evaluation of the contents of BHA, BHT, propylene glycol, and sodium saccharin in foods and estimation of daily intake based on the results of official inspection in Japan in fiscal year 1994. Journal of the Food Hygienic Society of Japan; 39 (2).1998.89-100. 1998.
Code: 8

Jaiswal, J., Poduri, R., and Panchagnula, R. Transdermal delivery of naloxone: ex vivo permeation studies. Int J Pharm 179(1):129-34. 1999.
Code: 8

Janik, M., Kleinhans, F. W., and Hagedorn, M. Overcoming a permeability barrier by microinjecting cryoprotectants into zebrafish embryos (Brachydanio rerio). Cryobiology 2000 Aug;41(1):25-34 . 2000.
Code: 8

Jewgenow, K., Penfold, L. M., Meyer, H. H., and Wildt, D. E. Viability of small preantral ovarian follicles from domestic cats after cryoprotectant exposure and cryopreservation. J Reprod Fertil 112(1):39-47. 1998.
Code: 8

Johnson, C. L., Pechonick, E., Park, S. D., Havemann, G. D., Leal, N. A., and Bobik, T. A. Functional genomic, biochemical, and genetic characterization of the Salmonella pduO gene, an ATP:cob(I)alamin adenosyltransferase gene. J Bacteriol 183(5):1577-84. 2001.
Code: 8

Johnson, W. Final report on the safety assessment of Propylene Glycol (PG) Dicaprylate, PG Dicaprylate-Dicaprate, PG Dicocoate, PG Dipelargonate, PG Isostearate, PG Laurate, PG Myristate, PG Oleate, PG Oleate SE, PG Dioleate, PG Dicaprate, PG Diisostearate, and PG Dilaurate. International Journal of Toxicology; 18 (Suppl.2).1999.35-52. 1999.
Code: 8

Jones, T. D. On 'toxicity equivalent factors' and 'relative potency' to account for differential toxicity and carcinogenicity: Concerns about uncommon effects of dose in animal experiments and environmental exposures to humans. Environmetrics; 9 (5).1998.525-539. 1998.
Code: 8

Kang, L., Jun, H. W., and McCall, J. W. Physicochemical studies of lidocaine-menthol binary systems for enhanced membrane transport. Int J Pharm 206(1-2):35-42. 2000.
Code: 8

Karami, K. and Beronius, P. On iontophoretic delivery enhancement: ionization and mobility of lidocaine hydrochloride in propylene glycol. Int.J.Pharm.; VOL 168 ISS Jun 8 1998, P85-95, (REF 17) . 1998.
Code: 8

Karran, G. and Legge, M. Non-enzymatic formation of formaldehyde in mouse oocyte freezing mixtures. Hum Reprod 11(12):2681-6. 1996.
Code: 8

Kataoka, M., Sasaki, M., Hidalgo, A. R., Nakano, M., and Shimizu, S. Glycolic acid production using ethylene glycol-oxidizing microorganisms. Biosci Biotechnol Biochem 65(10):2265-70. 2001.
Code: 8

Kedzierewicz, F., Darme, X., Etienne, A., Lemut, J., Hoffman, M., and Maincent, P. Preparation of silicone microspheres by emulsion polymerization: application to the encapsulation of a hydrophilic drug. J Microencapsul 15(2):227-36. 1998.
Code: 8

Kellner, D. L. Sorption of the Aircraft Deicing Fluid Component Methyl-Benzotriazole in Soil. /u0014 . 1999.
Code: 8

Kerai, M. Dj, Waterfield, C. J., and Timbrell, J. A. The Effects of Propylene Glycol on Paracetamol Toxicity in Hamsters. Annual Progress of the British Toxological Society, Warwick, England, Uk, March 24-26, 1997.Human & Experimental Toxicology; 16 (7).1997.407. 1997.
Code: 9

Kimber, I., Dearman, R. J., and Basketter, D. A. Estimation of relative skin sensitization potency using the local lymph node assay. Annual Congress of the British Toxicology Society, Stoke on Trent, England, Uk, April 18-21, 1999.Yhuman & Experimental Toxicology; 18 (8).1999.524. 1999.
Code: 8

Kiriyama, A., Sugahara, M., Yoshikawa, Y., Kiso, Y., and Takada, K. Bioavailability of oral dosage forms of a new HIV-1 protease inhibitor, KNI-272, in beagle dogs. Biopharm.Drug Dispos.; VOL 17 ISS Mar 1996, P125-134, (REF 20) . 1996.
Code: 8

Kolloffel, W. J., Weekers, L. E., and Goldhoorn, P. B. Pharmacokinetics of propylene glycol after rectal administration. Pharm World Sci 18(3):109-13. 1996.
Code: 5

Kowalczyk, C. L., Stachecki, J. J., Schultz, J. F., Leach, R. E., and Armant, D. R. Effects of alcohols on murine preimplantation development: Relationship to relative membrane disordering potency. Alcoholism Clinical and Experimental Research; 20 (3).1996.566-571. 1996.
Code: 5

Kruszewski, F. H., Walker, T. L., and Dipasquale, L. C. Evaluation of a human corneal epithelial cell line as an in vitro model for assessing ocular irritation. Fundamental and Applied Toxicology; 36 (2).1997.130-140. 1997.
Code: 8

Krzymien, M., Day, M., Shaw, K., Mohmad, R., and Sheehan, S. The role of feed composition on the composting process. II. Effect on the release of volatile organic compounds and odours. Journal of Environmental Science and Health Part a Toxic-Hazardous Substances & Environmental Engineering; 34 (6).1999.1369-1396. 1999.
Code: 8

Kucherenko, Y. U. and Moiseev, V. A. The use of 1H-NMR spectroscopy and refractometry for investigation of the distribution of nonelectrolytes of N-alcohol series between human red blood cells and extracellular medium. Membr Cell Biol 13(5):633-44. 2000.
Code: 8

Kulkarni, A. S. and Hopfinger, A. J. Membrane-interaction QSAR analysis: Application to the estimation of eye irritation by organic compounds. Pharmaceutical Research (New York); 16 (8).1999.1245-1253. 1999.
Code: 8

Kusunoki, J., Kai, A., Yanagawa, Y., Monma, C., Shingaki, M., Obata, H., Itoh, T., Ohta, K., Kudoh, Y., and Nakamura, A. [Biochemical and molecular characterization of Salmonella ser. enteritidis phage type 1 isolated from food poisoning outbreaks in Tokyo]. Kansenshogaku Zasshi 73(5):437-44. 1999.
Code: 8

Kuznetsova, N., Chi, S. L., and Leikin, S. Sugars and polyols inhibit fibrillogenesis of type I collagen by disrupting hydrogen-bonded water bridges between the helices. Biochemistry 37(34):11888-95. 1998.
Code: 8

LaDou, J. and Rohm, T. The international electronics industry. Int J Occup Environ Health 1998 Jan-Mar;4(1):1-18 . 1998.
Code: 8

Laitinen, J. Biomonitoring of technical grade 1-alkoxy-2-propanol acetates by analysing urinary 2-alkoxypropionic acids. Sci Total Environ 1997 Jun 20;199(1-2):31-9 . 1997.
Code: 8

Laitinen, J., Liesivuori, J., and Savolainen, H. Biological monitoring of occupational exposure to 1-methoxy-2-propanol. J Chromatogr B Biomed Sci Appl 694(1):93-8. 1997.
Code: 8

LaKind, J. S., McKenna, E. A., Hubner, R. P., and Tardiff, R. G. A review of the comparative mammalian toxicity of ethylene glycol and propylene glycol. Crit Rev Toxicol 29(4):331-65. 1999.
Code: 7

Lanigan, R. S. Special report: reproductive and developmental toxicity of ethylene glycol and its ethers. Int J Toxicol 1999;18(Suppl 2):53-67 . 1999.
Code: 8

Lansdown, A. B. and Taylor, A. Zinc and titanium oxides: promising UV-absorbers but what influence do they have on the intact skin? Int.J.Cosmet.Sci.; VOL 19 ISS 4 1997, P167-172, (REF 10) . 1997.
Code: 8

Larrucea, E., Arellano, A., Santoyo, S., and Ygartua, P. Combined effect of oleic acid and propylene glycol on the percutaneous penetration of tenoxicam and its retention in the skin. Eur J Pharm Biopharm 52(2):113-9. 2001.
Code: 8

Lee, B. J., Lee, T. S., Cha, B. J., Kim, S. H., and Kim, W. B. Percutaneous absorption and histopathology of a poloxamer-based formulation of capsaicin analog. Int.J.Pharm.; VOL 159 ISS Dec 15 1997, P105-114, (REF 21) . 1997.
Code: 8

Lee, B. J., Cui, J. H., Parrott, K. A., Ayres, J. W., and Sack, R. L. Percutaneous absorption and model membrane variations of melatonin in aqueous-based propylene glycol and 2-hydroxypropyl-beta-cyclodextrin vehicles. Arch Pharm Res 21(5):503-7. 1998.
Code: 8

Leone-Bay, A., Leipold, H., Agarwal, R., Rivera, T., and Baughman, R. A. Evolution of an oral heparin dosing solution. Drugs Future; VOL 22 ISS Aug 1997, P885-891, (REF 22) . 1997.
Code: 8

Leppik, I. E. Role of new and established antiepileptic drugs. Epilepsia 1998;39 Suppl 5:2-6 . 1998.
Code: 8

Levang, A. K., Zhao, K., and Singh, J. Effect of ethanol/propylene glycol on the in vitro percutaneous absorption of aspirin, biophysical changes and macroscopic barrier properties of the skin. Int J Pharm 181(2):255-63. 1999.
Code: 8

Li, B., Pinch, H., and Birt, D. F. Influence of vehicle, distant topical delivery, and biotransformation on the chemopreventive activity of apigenin, a plant flavonoid, in mouse skin. Pharm Res 13(10):1530-4. 1996.
Code: 8

Li, B. and Birt, D. F. In vivo and in vitro percutaneous absorption of cancer preventive flavonoid apigenin in different vehicles in mouse skin. Pharm.Res.; VOL 13 ISS Nov 1996, P1710-1715, (REF 9) . 1996.
Code: 8

Liesivuori, J., Laitinen, J., and Savolainen, H. Rat model for renal effects of 2-alkoxyalcohols and their acetates. Arch Toxicol 73(4-5):229-32. 1999.
Code: 5

Lin, S. Y., Duan, K. J., and Lin, T. C. Microscopic FT-IR/DSC system used to simultaneously investigate the conversion process of protein structure in porcine stratum corneum after pretreatment with skin penetration enhancers. Methods Find Exp Clin Pharmacol 18(3):175-81. 1996.
Code: 8

Liu, C. J., Ueda, M., Kosaka, S., Hirata, T., Yokomise, H., Inui, K., Hitomi, S., and Wada, H. A newly developed solution enhances thirty-hour preservation in a canine lung transplantation model. J Thorac Cardiovasc Surg 112(3):569-76. 1996.
Code: 8

Longo, D. L., Duffey, P. L., Kopp, W. C., Heyes, M. P., Alvord, W. G., Sharfman, W. H., Schmidt, P. J., Rubinow, D. R., and Rosenstein, D. L. Conditioned immune response to interferon-gamma in humans. Clin Immunol 90(2):173-81. 1999.
Code: 8

Loskutoff, N. M., Simmons, H. A., Goulding, M., Thompson, G., De Jongh, T., and Simmons, L. G. Species and individual variations in cryoprotectant toxicities and freezing resistances of epididymal sperm from African antelope. Animal Reproduction Science; 42 (1-4).1996.527-535. 1996.
Code: 8

Louik, C., Frumkin, H., Ellenbecker, M. J., Goldman, R. H., Werler, M. M., and Mitchell, A. A. Use of a job-exposure matrix to assess occupational exposures in relation to birth defects. J Occup Environ Med 42(7):693-703. 2000.
Code: 8

Machate, T. and Kettrup, A. Spectrophotometric method for the determination of 1,2-propylene glycol. Fresenius' Journal of Analytical Chemistry; 360 (1).1998.137-138. 1998.
Code: 8

Mahadevan, M. M., McIntosh, Q., Miller, M. M., Breckinridge, S. M., Maris, M., and Moutos, D. M. Formaldehyde in cryoprotectant propanediol and effect on mouse zygotes. Hum Reprod 1998 Apr;13(4):979-82 . 1998.
Code: 8

Mailhes, J. B., Young, D., and London, S. N. 1,2-propanediol-induced premature centromere separation in mouse oocytes and aneuploidy in one-cell zygotes. Biol Reprod 57(1):92-8. 1997.
Code: 3, 6

Malandain, H. and Cano, Y. An Enzymatic Assay for the Emergency Diagnosis of Propylene Glycol Intoxication. 48th Annual Meeting of the American Association for Clinical Chemistry, Inc., Chicago, Illinois, USA, July 28-August 1, 1996.Clinical Chemistry; 42 (6 Part 2).1996.S213. 1996.
Code: 8

Mallidis, C., Phelan, D., Coles, M., and Jones, G. Does the composition of propane-1,2-diol alter over time? J Assist Reprod Genet 13(1):53-5. 1996.
Code: 8

Malonne, H., Fontaine, J., and Moes, A. In vitro/in vivo characterization of a tramadol HCl depot system composed of monoolein and water. Biol Pharm Bull 23(5):627-31. 2000.
Code: 8

Manganaro, A. M. and Wertz, P. W. The effects of permeabilizers on the in vitro penetration of propranolol through porcine buccal epithelium. Mil Med 161(11):669-72. 1996.
Code: 8

Massaad, C., Entezami, F., Massade, L., Benahmed, M., Olivennes, F., Barouki, R., and Hamamah, S. How can chemical compounds alter human fertility? Eur J Obstet Gynecol Reprod Biol 100(2):127-37. 2002.
Code: 8

Matthews, H. B. Chemical Metabolism and Toxicokinetics. Crisp Data Base National Institutes Of Health . 1996.
Code: 8

Mauldin, R. E., Goodall, M. J., Volz, S. A., Griffin, D. L., Petty, E. J., and Johnston, J. J. Zinc phosphide residue determination in alfalfa (Medicago sativa). Journal of Agricultural and Food Chemistry; 45 (6).1997.2107-2111. 1997.
Code: 8

McCain, W. C., Lee, R., Johnson, M. S., Whaley, J. E., Ferguson, J. W., Beall, P., and Leach, G. Acute oral toxicity study of pyridostigmine bromide, permethrin, and DEET in the laboratory rat. Journal of Toxicology and Environmental Health; 50 (2).1997.113-124. 1997.
Code: 8

McClanahan, S., Hunter, J., Murphy, M., and Valberg, S. Propylene glycol toxicosis in a mare. Veterinary and Human Toxicology; 40 (5).1998.294-296. 1998.
Code: 5

Mead, C. and Pentreath, V. W. Evaluation of toxicity indicators in rat primary astrocytes, C6 glioma and human 1231N1 astrocytoma cells: Can gliotoxicity be distinguished from cytotoxicity? Archives of Toxicology; 72 (6).1998.372-380. 1998.
Code: 8

Medlicott, N. J., Foster, K. A., Audus, K. L., Gupta, S., and Stella, V. J. Comparison of the effects of potential parenteral vehicles for poorly water soluble anticancer drugs (organic cosolvents and cyclodextrin solutions) on cultured endothelial cells (HUV-EC). J Pharm Sci 87(9):1138-43. 1998.
Code: 8

Meshitsuka, S., Inoue, M., Seki, A., Koeda, T., and Takeshita, K. Screening of urine by one-dimensional and pulsed-field gradient two- dimensional 1H NMR spectroscopy: intoxication by propylene glycol in an infant patient. Clin Chim Acta 279(1-2):47-54. 1999.
Code: 8

Mirochnick, M., Clarke, D. F., McNamara, E. R., and Cabral, H. Bioequivalence of a propylene glycol-based liquid dapsone preparation and dapsone tablets. Am J Health Syst Pharm 57(19):1775-7. 2000.
Code: 8

Mitchell, H. L. Toxicity of Tolyltriazole to Gram-Positive Coccus Microorganisms. /u0019 . 2000.
Code: 8

Miyoshi, S., Pate, J. L., and Palmquist, D. L. Effects of propylene glycol drenching on energy balance, plasma glucose, plasma insulin, ovarian function and conception in dairy cows. Anim Reprod Sci 68(1-2):29-43. 2001.
Code: 5

Mochimaru, M. and Sakurai, H. Effects of organic solvents and tentoxin on enzyme-bound ATP synthesis in isolated chloroplast coupling factor 1. Photosynthesis Research; 57 (3).1998.305-315. 1998.
Code: 8

Mori, T., Sakimoto, M., Kagi, T., and Sakai, T. Secondary alcohol dehydrogenase from a vinyl alcohol oligomer-degrading Geotrichum fermentans; stabilization with Triton X-100 and activity toward polymers with polymerization degrees less than 20. 1998.
Code: 8

Morshed, K. M., Jain, S. K., and McMartin, K. E. Propylene glycol-mediated cell injury in a primary culture of human proximal tubule cells. Toxicol Sci 46(2):410-7. 1998.
Code: 5

Moser, K., Kriwet, K., Froehlich, C., Kalia, Y. N., and Guy, R. H. Supersaturation: enhancement of skin penetration and permeation of a lipophilic drug. Pharm Res 18(7):1006-11. 2001.
Code: 8

Mukaida, T., Wada, S., Takahashi, K., Pedro, P. B., An, T. Z., and Kasai, M. Vitrification of human embryos based on the assessment of suitable conditions for 8-cell mouse embryos. Hum Reprod 13(1O):2874-9. 1998.
Code: 8

Mura, P., Faucci, M. T., Bramanti, G., and Corti, P. Evaluation of transcutol as a clonazepam transdermal permeation enhancer from hydrophilic gel formulations. Eur J Pharm Sci 9(4):365-72. 2000.
Code: 8

Murakami, T., Yoshioka, M., Yumoto, R., Higashi, Y., Shigeki, S., Ikuta, Y., and Yata, N. Topical delivery of keloid therapeutic drug, tranilast, by combined use of oleic acid and propylene glycol as a penetration enhancer: evaluation by skin microdialysis in rats. J Pharm Pharmacol 50(1):49-54. 1998.
Code: 8

Mushrush, G. W., Basak, S. C., Slone, J. E., Beal, E. J., Basu, S., Stalick, W. M., and Hardy, D. R. Computational Study of the Environmental Fate of Selected Aircraft Fuel System Deicing Compounds. Journal of Environmental Science and Health.Part A: Environmental Science and Engineering and Toxic and Hazardous Substance Control, Vol.A32, No.8, pages 2201-2211, 17 references, 1997 . 1997.
Code: 8

Neurath, G., Franke, S., Francke, W., and Marquardt, H. Mutagenicity of Trichlorinated Dipropylether Isomers. 39th Spring Meeting of the German Society for Experimental and Clinical Pharmacology and Toxicology, Mainz, Germany, March 17-19, 1998.Naunyn-Schmiedeberg's Archives of Pharmacology; 357 (4 Suppl.).1998.R142. 1998.
Code: 8

Newton, H., Fisher, J., Arnold, J. R., Pegg, D. E., Faddy, M. J., and Gosden, R. G. Permeation of human ovarian tissue with cryoprotective agents in preparation for cryopreservation. Hum Reprod 13(2):376-80. 1998.
Code: 8

Niazy, E. M. Differences in penetration enhancing effect of Azone through excised rabbit, rat, hairless mouse, guinea pig and human skins. Int.J.Pharm.; VOL 130 ISS Mar 22 1996, P225-230, (REF 24) . 1996.
Code: 8

Noddegaard, F. and Kennaway, D. J. A method of achieving physiological plasma levels of melatonin in the chicken by oral administration. J Pineal Res 27(3):129-38. 1999.
Code: 8

Nordic steering group for assessment of health effects of, chemicals. Health effects of selected chemicals 4-5. 2,2ï-Oxydiethanol (Diethylene glycol). TA:Nord PG:317-41 YR:1999 IP: VI:15 . 1999.
Code: 8

Ogier de Baulny, B., Labbe, C., and Maisse, G. Membrane integrity, mitochondrial activity, ATP content, and motility of the European catfish (Silurus glanis) testicular spermatozoa after freezing with different cryoprotectants. Cryobiology 39(2):177-84. 1999.
Code: 8

Ogiso, T., Niinaka, N., and Iwaki, M. Mechanism for enhancement effect of lipid disperse system on percutaneous absorption. J Pharm Sci 85(1):57-64. 1996.
Code: 8

Oh, S. Y., Jeong, S. Y., Park, T. G., and Lee, J. H. Enhanced transdermal delivery of AZT (Zidovudine) using iontophoresis and penetration enhancer. J Control Release 51(2-3):161-8. 1998.
Code: 8

Oude Elferink, S. J., Krooneman, J., Gottschal, J. C., Spoelstra, S. F., Faber, F., and Driehuis, F. Anaerobic conversion of lactic acid to acetic acid and 1, 2-propanediol by Lactobacillus buchneri. Appl Environ Microbiol 67(1):125-32. 2001.
Code: 8

Palmer, R., Godwin, D., and McKinney, P. Transdermal Kinetics of a Mercurous Chloride Beauty Cream an in Vitro Human Skin Analysis. Annual Meeting of the North American Congress of Clinical Toxicology, Orlando, Florida, USA, September 9-15, 1998.Journal of Toxicology Clinical Toxicology; 36 (5).1998.528-529. 1998.
Code: 8

Panchagnula, R., Salve, P. S., Thomas, N. S., Jain, A. K., and Ramarao, P. Transdermal delivery of naloxone: effect of water, propylene glycol, ethanol and their binary combinations on permeation through rat skin. Int J Pharm 219(1-2):95-105. 2001.
Code: 8

Parker, M. G., Fraser, G. L., Watson, D. M., and Riker, R. R. Removal of propylene glycol and correction of increased osmolar gap by hemodialysis in a patient on high dose lorazepam infusion therapy. Intensive Care Med 28(1):81-4. 2002.
Code: 8

Patro, N., Mishra, S. K., Chattopadhyay, M., and Patro, I. K. Neurotoxicological effects of deltamethrin on the postnatal development of cerebellum of rat. Journal of Biosciences (Bangalore); 22 (2).1997.117-130. 1997.
Code: 8

Peleg, O., Bar-Oz, B., and Arad, I. Coma in a premature infant associated with the transdermal absorption of propylene glycol. 1998.
Code: 5

Pendergrass, S. M. Determination of glycols in air: Development of sampling and analytical methodology and application to theatrical smokes. American Industrial Hygiene Association Journal July-Aug.1999, Vol.60, No.4, p.452-457.Illus.23 ref. 1999.
Code: 8

Peng, L. and Nimni, M. E. Delivery of erythromycin to subcutaneous tissues in rats by means of a trans-phase delivery system. J Pharm Pharmacol 51(10):1135-41. 1999.
Code: 8

Perkins, M. A., Osborne, R., and Johnson, G. R. Development of an in vitro method for corrosion testing. Fundamental and Applied Toxicology; 31 (1).1996.9-18. 1996.
Code: 8

Perkins, M. A., Osborne, R., Rana, F. R., Ghassemi, A., and Robinson, M. K. Comparison of in vitro and in vivo human skin responses to consumer products and ingredients with a range of irritancy potential. Toxicological Sciences; 48 (2).1999.218-229. 1999.
Code: 8

Pilgram, G. S., Engelsma-van Pelt, A. M., Koerten, H. K., and Bouwstra, J. A. The effect of two azones on the lateral lipid organization of human stratum corneum and its permeability. Pharm Res 17(7):796-802. 2000.
Code: 5

Pillard, D. A. and Dufresne, D. L. Toxicity of formulated glycol deicers and ethylene and propylene glycol to Lactuca sativa, Lolium perenne, Selenastrum capricornutum, and Lemna minor. Archives of Environmental Contamination and Toxicology; 37 (1).1999.29-35. 1999.
Code: 8

Pistoor, F. Hm, Rambukkana, A., Kroezen, M., Lepoittevin, J. P., Bos, J. D., Kapsenberg, M. L., and Das, P. K. Novel predictive assay for contact allergens using human skin explant cultures. American Journal of Pathology; 149 (1).1996.337-343. 1996.
Code: 8

Poppe, L. and Retey, J. Kinetic investigations with inhibitors that mimic the posthomolysis intermediate in the reactions of coenzyme-B12-dependent glycerol dehydratase and diol dehydratase. Eur J Biochem 245(2):398-401. 1997.
Code: 8

Price-Carter, M., Tingey, J., Bobik, T. A., and Roth, J. R. The alternative electron acceptor tetrathionate supports B12-dependent anaerobic growth of Salmonella enterica serovar typhimurium on ethanolamine or 1,2-propanediol. J Bacteriol 183(8):2463-75. 2001.
Code: 8

Proniuk, S., Dixon, S. E., and Blanchard, J. Investigation of the utility of an in vitro release test for optimizing semisolid dosage forms. Pharm Dev Technol 6(3):469-76. 2001.
Code: 8

Qatibi, A. I., Bennisse, R., Jana, M., and Garcia, J. L. Anaerobic degradation of glycerol by Desulfovibrio fructosovorans and D. carbinolicus and evidence for glycerol-dependent utilization of 1,2-propanediol. Current Microbiology; 36 (5).1998.283-290. 1998.
Code: 8

Qian, W., Amin, R. H., and Shichi, H. Cytotoxic metabolite of acetaminophen, N-acetyl-p-benzoquinone imine, produces cataract in DBA2 mice. J Ocul Pharmacol Ther 15(6):537-45. 1999.
Code: 8

Rayburn, W., Christensen, D., and Gonzalez, C. Neurobehavior effects in four strains of mice offspring exposed prenatally to alprazolam (XanaxÑ). Am J Obstet Gynecol 2001 Dec;185(6 Pt 2):S184 . 2001.
Code: 8

Reddy, I. K., Khan, M. A., Wu, W. M., and Bodor, N. S. Permeability of a soft steroid, loteprednol etabonate, through an excised rabbit cornea. J Ocul Pharmacol Ther 12(2):159-67. 1996.
Code: 8

Rice, P. J., Anderson, T. A., and Coats, J. R. The Use of Vegetation to Enhance Biodegradation and Reduce Offsite Movement of Aircraft Deicers. 212th American Chemical Society National Meeting, Orlando, Florida, USA, August 25-29, 1996.Abstracts of Papers American Chemical Society; 212 (1-2).1996.Agro 54. 1996.
Code: 8

Rice, P. J. and Coats, J. R. The Use of Plants for Reducing the Environmental Impact of De-Icing Agents Au - Anderson Ta. 212th American Chemical Society National Meeting, Orlando, Florida, USA, August 25-29, 1996.Abstracts of Papers American Chemical Society; 212 (1-2).1996.Agro 97. 1996.
Code: 8

Rondon, M. R. and Escalante-Semerena, J. C. High levels of transcription factor RpoS (sigma S) in mviA mutants negatively affect 1,2-propanediol-dependent transcription of the cob/pdu regulon of Salmonella typhimurium LT2. FEMS Microbiol Lett 169(1):147-53. 1998.
Code: 8

Rosenkranz, M., Rosenkranz, H. S., and Klopman, G. Intercellular communication, tumor promotion and non-genotoxic carcinogenesis: relationships based upon structural considerations. Mutat Res 1997 Nov 28;381(2):171-88 . 1997.
Code: 8

Saini, M., Dash, S., and Nagpaul, J. P. Hematological Alterations in Propylene Glycol-Dosed Female Rats Are Minimal. Veterinary and Human Toxicology, Vol.38, No.2, pages 81-85, 27 references, 1996 . 1996.
Code: 5

Schenker, M. B. Reproductive health effects of glycol ether exposure in the semiconductor industry. Occup Hyg 1996;2(1-6):367-72 . 1996.
Code: 8

Schneider, I. M., Dobner, B., Neubert, R., and Wohlrab, W. Evaluation of drug penetration into human skin ex vivo using branched fatty acids and propylene glycol. Int.J.Pharm.; VOL 145 ISS Dec 6 1996, P187-196, (REF 32) . 1996.
Code: 8

Schoenberg, T., Veltman, S., and Switzenbaum, M. Kinetics of anaerobic degradation of glycol-based type I aircraft deicing fluids. Biodegradation 12(1):59-68. 2001.
Code: 8

Schramke, J. A., Murphy, S. F., Doucette, W. J., and Hintze, W. D. Prediction of aqueous diffusion coefficients for organic compounds at 25êC. Chemosphere; 38 (10).1999.2381-2406. 1999.
Code: 8

Schwarb, F. P., Imanidis, G., Smith, E. W., Haigh, J. M., and Surber, C. Effect of concentration and degree of saturation of topical fluocinonide formulations on in vitro membrane transport and in vivo availability on human skin. Pharm Res 16(6):909-15. 1999.
Code: 8

Seay, R. E., Graves, P. J., and Wilkin, M. K. Comment: possible toxicity from propylene glycol in lorazepam infusion. Ann.Pharmacother.; VOL 31 ISS May 1997, P647-648, (REF 11) . 1997.
Code: 5

Senthilmohan, S. T., McEwan, M. J., Wilson, P. F., Milligan, D. B., and Freeman, C. G. Real time analysis of breath volatiles using SIFT-MS in cigarette smoking. Redox Rep 6(3):185-7. 2001.
Code: 8

Shepherd, M. F. and Felt-Gunderson, P. A. Diarrhea associated with lorazepam solution in a tube-fed patient. Nutr.Clin.Pract.; VOL 11 ISS 3 1996, P117-120, (REF 13) . 1996.
Code: 8

Shimoi, K., Okada, H., Furugori, M., Goda, T., Takase, S., Suzuki, M., Hara, Y., Yamamoto, H., and Kinae, N. Intestinal absorption of luteolin and luteolin 7-O-beta-glucoside in rats and humans. FEBS Lett 438(3):220-4. 1998.
Code: 8

Siddiqui, A., Yasmeen, A., Shaharyar, S., and Mariam, T. Neural and endocrine consequences of perinatal exposure to benzodiazepine. J Reprod Fertil Abstr Ser 1998 Jul;(21):30 . 1998.
Code: 8

Singhai, A., Jain, S., and Jain, N. K. Evaluation of piroxicam injection. Indian J.Pharm.Sci.; VOL 59 ISS 6 1997, P306-311, (REF 9) . 1997.
Code: 8

Skaare, A. B., Rolla, G., and Barkvoll, P. The influence of triclosan, zinc or propylene glycol on oral mucosa exposed to sodium lauryl sulphate. Eur J Oral Sci 105(5 Pt 2):527-33. 1997.
Code: 8

Sloan, K. B., Taylor, H. E., and Hamilton, J. C. Alcohol flux and effect on the delivery of theophylline from propylene glycol. Int.J.Pharm.; VOL 156 ISS Oct 10 1997, P17-26, (REF 14) . 1997.
Code: 8

Son, W. Y., Park, S. E., Lee, K. A., Lee, W. S., Ko, J. J., Yoon, T. K., and Cha, K. Y. Effects of 1,2-propanediol and freezing-thawing on the in vitro developmental capacity of human immature oocytes. Fertil Steril 1996 Dec;66(6):995-9 . 1996.
Code: 9

Sonoda, T., Fukunaga, K., Tashiro, S., Ohba, K., and Sugimoto, T. Carbamazepine-induced cardiovascular abnormalities in chick embryos. Teratology 1996 Oct;54(4):14A . 1996.
Code: 8

Squillante, E., Needham, T., Maniar, A., Kislalioglu, S., and Zia, H. Codiffusion of propylene glycol and dimethyl isosorbide in hairless mouse skin. Eur J Pharm Biopharm 46(3):265-71. 1998.
Code: 8

Sun, W. Q., Meng, M., Kumar, G., Geelhaar, L. A., Payne, G. F., Speedie, M. K., and Stacy, J. R. Biological denitration of propylene glycol dinitrate by Bacillus sp. ATCC 51912. Applied Microbiology and Biotechnology; 45 (4).1996.525-529. 1996.
Code: 8

Swan, S. H. and Forest, W. Reproductive risks of glycol ethers and other agents used in semiconductor manufacturing. Occup Hyg 1996;2(1-6):373-85 . 1996.
Code: 8

Taguchi, K., Fukushima, S., Yamaoka, Y., Takeuchi, Y., and Suzuki, M. Enhancement of propylene glycol distribution in the skin by high purity cis-unsaturated fatty acids with different alkyl chain lengths having different double bond position. Biol Pharm Bull 22(4):407-11. 1999.
Code: 8

Takahashi, O. and Oishi, S. Disposition of orally administered bisphenol A in pregnant rats and the placental transfer to fetuses. J Toxicol Sci 1999 Oct;24(4):297 . 1999.
Code: 8

Takahashi, O. and Oishi, S. Disposition of orally administered 2,2-Bis(4-hydroxyphenyl)propane (Bisphenol A) in pregnant rats and the placental transfer to fetuses. Environ Health Perspect 2000 Oct;108(10):931-5 . 2000.
Code: 8

Takeuchi, Y., Miyawaki, K., Kamiyabu, S., Fukushima, S., Yamaoka, Y., Kishimoto, S., Taguchi, K., Masai, H., and Kamata, Y. Use of electroporation to accelerate the skin permeability enhancing action of oleic acid. Biol Pharm Bull 23(7):850-4. 2000.
Code: 8

Tanojo, H., Bouwstra, J. A., Junginger, H. E., and Bodde, H. E. In vitro human skin barrier modulation by fatty acids: skin permeation and thermal analysis studies. Pharm.Res.; VOL 14 ISS Jan 1997, P42-49, (REF 20) . 1997.
Code: 8

Tanojo, H., Junginger, H. E., and Bodde, H. E. In vivo human skin permeability enhancement by oleic acid: transepidermal water loss and Fourier-transform infrared spectroscopy studies. J.Controlled Release; VOL 47 ISS Jul 7 1997, P31-39, (REF 44) . 1997.
Code: 5

Tanojo, H. and Junginger, H. E. Skin permeation enhancement by fatty acids. J.Disper.Sci.Tech.; VOL 20 ISS 1-2 1999, P127-138, (REF 25) . 1999.
Code: 8

Tanojo, H., Boelsma, E., Junginger, H. E., Ponec, M., and Bodde, H. E. In vivo human skin permeability enhancement by oleic acid: laser Doppler velocimetry study. J.Controlled Release; VOL 58 ISS Mar 8 1999, P97-104, (REF 39) . 1999.
Code: 8

Taylor, S. L. and Dormedy, E. S. The Role of Flavoring Substances in Food Allergy and Intolerance. Taylor, S.L.(Ed.).Advances in Food and Nutrition Research, Vol.42.Ix+278p.Academic Press, Inc.: San Diego, California, USA; London, England, Uk.Isbn 0-12-016442-6.; 42 (0).1998.1-44. 1998.
Code: 8

Tenjarla, S. N., Puranajoti, P., Kasina, R., and Mandal, T. Terbutaline transdermal delivery: preformulation studies and limitations of in vitro predictive parameters. J.Pharm.Pharmacol.; VOL 48 ISS Nov 1996, P1138-1142, (REF 10) . 1996.
Code: 8

Tice, R. R., Nylander-French, L. A., and French, J. E. Absence of systemic in vivo genotoxicity after dermal exposure to ethyl acrylate and tripropylene glycol diacrylate in Tg.AC (v-Ha-ras) mice. Environ Mol Mutagen 1997;29(3):240-9 . 1997.
Code: 8

Tobimatsu, T., Kajiura, H., Yunoki, M., Azuma, M., and Toraya, T. Identification and expression of the genes encoding a reactivating factor for adenosylcobalamin-dependent glycerol dehydratase. J Bacteriol 181(13):4110-3. 1999.
Code: 8

Tsang, A. W. and Escalante-Semerena, J. C. cobB function is required for catabolism of propionate in Salmonella typhimurium LT2: evidence for existence of a substitute function for CobB within the 1,2-propanediol utilization (pdu) operon. J Bacteriol 178(23):7016-9. 1996.
Code: 8

Tsang, A. W., Horswill, A. R., and Escalante-Semerena, J. C. Studies of regulation of expression of the propionate (prpBCDE) operon provide insights into how Salmonella typhimurium LT2 integrates its 1,2- propanediol and propionate catabolic pathways. J Bacteriol 180(24):6511-8. 1998.
Code: 8

Tsuchiya, Y. and Kanabus-Kaminska, J. M. Identification and Quantification of Volatile Organic Compounds Using Systematic Single-Ion Chromatograms. Wang, W., J.L.Schnoor and J.Doi (Ed.).Astm Stp, 1261.Volatile Organic Compounds In the Environment; Symposium, Montreal, Quebec, Canada, April 11-13, 1994.291p.Astm (American Society for Testing and Materials): Philadelphia, Pennsylvania, USA.Isbn 0-8031-2048-6.; 0 (1261).1996.127-138. 1996.
Code: 8

Tsutsumi, K., Obata, Y., Takayama, K., Loftsson, T., and Nagai, T. Effect of cod-liver oil extract on the buccal permeation of ergotamine tartrate. Drug Dev Ind Pharm 24(8):757-62. 1998.
Code: 8

Tuo, J., Loft, S., Thomsen, M. S., and Poulsen, H. E. Benzene-induced genotoxicity in mice in vivo detected by the alkaline comet assay: reduction by CYP2E1 inhibition. Mutat Res 368(3-4):213-9. 1996.
Code: 8

Valenta, C. and Wedenig, S. Effects of penetration enhancers on the in-vitro percutaneous absorption of progesterone. J Pharm Pharmacol 49(10):955-9. 1997.
Code: 8

van den Abbeel, E., van der Elst, J., van der Linden, M., and van Steirteghem, A. C. High survival rate of one-cell mouse embryos cooled rapidly to -196 degrees C after exposure to a propylene glycol-dimethylsulfoxide- sucrose solution. Cryobiology 34(1):1-12. 1997.
Code: 8

van den Wollenberg, L., Pellicaan, C. H., and Muller, K. [Intoxication with propylene glycol in two horses.]. Tijdschr Diergeneeskd 125(17):519-23. 2000.
Code: 5

Varon, J. and Marik, P. Etomidate and propylene glycol toxicity. J Emerg Med 16(3):485. 1998.
Code: 9

Veltman, S., Schoenberg, T., and Switzenbaum, M. S. Alcohol and acid formation during the anaerobic decomposition of propylene glycol under methanogenic conditions. Biodegradation 9(2):113-8. 1998.
Code: 8

Verschuuren, H. G. Toxicological Studies with Propylene Glycol n-Butyl Ether. Occupational Hygiene, Vol.2, Nos.1-6, pages 311-318, 6 references, 1996 . 1996.
Code: 8

Villard, P. H., Seree, E. M., Re, J. L., De Meo, M., Barra, Y., Attolini, L., Dumenil, G., Catalin, J., Durand, A., and Lacarelle, B. Effects of tobacco smoke on the gene expression of the Cyp1a, Cyp2b, Cyp2e, and Cyp3a subfamilies in mouse liver and lung: relation to single strand breaks of DNA. Toxicol Appl Pharmacol 1998 Feb;148(2):195-204 . 1998.
Code: 8

Vincent, R., Rieger, B., Subra, I., and Poirot, P. Exposure Assessment to Glycol Ethers by Atmosphere and Biological Monitoring. Occupational Hygiene, Vol.2, Nos.1-6, pages 79-90, 14 references, 1996 . 1996.
Code: 8

Vitkova, Z., Gardavska, K., and Cizmarik, J. Study of local anaesthetics. Part 139. Preformulation study of N-[2-(2- heptyloxyphenylcarbamoyloxy)-ethyl] dimethylammonium chloride. Acta Pharm Hung 66(6):253-7. 1996.
Code: 8

Voziyan, P. A. and Fisher, M. T. Polyols induce ATP-independent folding of GroEL-bound bacterial glutamine synthetase. Arch Biochem Biophys 397(2):293-7. 2002.
Code: 8

W, H. O. Evaluation of Certain Food Additives and Contaminants. Who Technical Report Series; 0 (868).1997.I-Viii, 1-69. 1997.
Code: 8

Wada, H., Liu, C. J., Hirata, T., Bando, T., and Kosaka, S. Effective 30-hour preservation of canine lungs with modified ET-Kyoto solution. Ann Thorac Surg; 61(4):1099-105 1996 . 1996.
Code: 8

Wahlberg, J. E. and Boman, A. Prevention of Contact Dermatitis from Solvents. Elsner, P., Et Al.(Ed.).Current Problems in Dermatology (Basel), Vol.25.Prevention of Contact Dermatitis; International Conference on the Prevention of Contact Dermatitis, Zurich, Switzerland, October 4-7, 1995.X+226p.S.Karger Ag: Basel, Switzerland; New York, New York, USA.Isbn 3-8055-6311-6.; 25 (0).1996.57-66. 1996.
Code: 8

Walter, D., Ailion, M., and Roth, J. Genetic characterization of the pdu operon: use of 1,2-propanediol in Salmonella typhimurium. J Bacteriol 179(4):1013-22. 1997.
Code: 8

Wang, G. and Bai, N. Structure-activity relationships for rat and mouse DL50 of miscellaneous alcohols. Chemosphere; 36 (7).1998.1475-1483. 1998.
Code: 8

Warbrick, E. V., Dearman, R. J., Basketter, D. A., and Kimber, I. Local lymph node assay responses to (chloro)methylisothiazolinone: Influence of vehicle. Annual Congress of the British Toxicology Society, Stoke on Trent, England, Uk, April 18-21, 1999.Yhuman & Experimental Toxicology; 18 (8).1999.526. 1999.
Code: 8

Wester, R. C., Hui, X., Landry, T., and Maibach, H. I. In vivo skin decontamination of methylene bisphenyl isocyanate (MDI): soap and water ineffective compared to polypropylene glycol, polyglycol- based cleanser, and corn oil. Toxicol Sci 48(1):1-4. 1999.
Code: 8

Who. Evaluation of certain food additives and contaminants. 884: Forty-ninth report of the Joint FAO-WHO Expert Committee on Food Additives. Who Technical Report Series; 0 (884).1999.1-96. 1999.
Code: 9

Wieslander, G., Norback, D., and Lindgren, T. Experimental exposure to propylene glycol mist in aviation emergency training: acute ocular and respiratory effects. Occup Environ Med 58(10):649-55. 2001.
Code: 5

Williams, S. P., O'Brien, S., Whitmore, K., Purcell, W. M., Cookson, M. R., Mead, C., Pentreath, V. W., and Atterwill, C. K. An in vitro neurotoxicity testing scheme: Evaluation of cytotoxicity determinations in neural and non-neural cells. In Vitro Toxicology; 9 (1).1996.83-92. 1996.
Code: 8

Wilson, K. C., Reardon, C., and Farber, H. W. Propylene glycol toxicity in a patient receiving intravenous diazepam. N Engl J Med 343(11):815. 2000.
Code: 9

Wolkoff, P. and Nielsen, P. A. A new approach for indoor climate labeling of building materials-emission testing, modeling, and comfort evaluation. Atmospheric Environment; 30 (15).1996.2679-2689. 1996.
Code: 8

Wormser, U., Kohen, R., Moor, E. V., Eldad, A., Gal, R., Nyska, A., and Brodsky, B. Noninvasive procedure for in situ determination of skin surface aspartic proteinase activity in animals; implications for human skin. Arch Dermatol Res 289(12):686-91. 1997.
Code: 8

Woycik, C. L. and Walker, P. C. Correction and comment: possible toxicity from propylene glycol in injectable drug preparations. Ann Pharmacother 31(11):1413. 1997.
Code: 9

Wrzesinski, C. L., Feeney, W. P., Feely, W. F., and Crouch, L. S. Dermal penetration of 4"-(epi-methylamino)-4"-deoxyavermectin B1a benzoate in the rhesus monkey. Food and Chemical Toxicology; 35 (10-11).1997.1085-1089. 1997.
Code: 8

Xu, D., Dhillon, A. S., Abelmann, A., Croft, K., Peters, T. J., and Palmer, T. N. Alcohol-related diols cause acute insulin resistance in vivo. Metabolism 47(10):1180-6. 1998.
Code: 5

Zamir, G., Bloom, A. I., and Reissman, P. Prevention of intestinal adhesions after laparotomy in a rat model--a randomized prospective study. Res Exp Med (Berl) 197(6):349-53. 1998.
Code: 8

Ziv, G., Shem-Tov, M., and Ascher, F. Combined effect of ampicillin, colistin and dexamethasone administered intramuscularly to dairy cows on the clinico-pathological course of E. coli-endotoxin mastitis. Veterinary Research (Paris); 29 (1).1998.89-98. 1998.
Code: 8


 

Uk E Liquid Free Delivery UK